The effect of replacing fly ash with GGBFS on the fracture parameters of geopolymer concrete

IF 2.7 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Mohammad Reza Abbasi Zargaleh , Moosa Mazloom , Mojtaba Jafari Samimi , Mohammad Hassan Ramesht
{"title":"The effect of replacing fly ash with GGBFS on the fracture parameters of geopolymer concrete","authors":"Mohammad Reza Abbasi Zargaleh ,&nbsp;Moosa Mazloom ,&nbsp;Mojtaba Jafari Samimi ,&nbsp;Mohammad Hassan Ramesht","doi":"10.1016/j.matlet.2025.138394","DOIUrl":null,"url":null,"abstract":"<div><div>Given the abundance, reduced cost, and environmental advantages associated with the utilization of ground granulated blast furnace slag (GGBFS) as a substitute for fly ash, this investigation examines the influence of GGBFS replacement levels of 5, 10, 15, 20, 25, and 30 % on the fracture behavior of lightweight fly ash-based geopolymer concrete (LWFCGC). Concrete specimens were produced using different proportions of GGBFS and fly ash and cured at 80 °C. Subsequently, they were subjected to compressive, tensile, and three-point bending tests. The results indicate that replacing fly ash with GGBFS significantly influences the mechanical properties of geopolymer concrete. Generally, increasing the GGBFS replacement percentage up to 20 % led to higher compressive strength and reduced porosity. However, increasing the GGBFS from 20 % to 30 % led to lower compressive strength. Increasing the replacement percentage from 0 % to 30 % resulted in an increase in fracture toughness from 16.73 to 27.49 MPa√mm and fracture energy from 54.9 to 156.06 N/m. In conclusion, this study shows that GGBFS can be a suitable substitute for fly ash in geopolymer concrete to some extent. By carefully selecting the ratio of GGBFS to fly ash, geopolymer concrete with desirable mechanical properties, fracture parameters, and durability can be achieved.</div></div>","PeriodicalId":384,"journal":{"name":"Materials Letters","volume":"390 ","pages":"Article 138394"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Letters","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167577X25004239","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Given the abundance, reduced cost, and environmental advantages associated with the utilization of ground granulated blast furnace slag (GGBFS) as a substitute for fly ash, this investigation examines the influence of GGBFS replacement levels of 5, 10, 15, 20, 25, and 30 % on the fracture behavior of lightweight fly ash-based geopolymer concrete (LWFCGC). Concrete specimens were produced using different proportions of GGBFS and fly ash and cured at 80 °C. Subsequently, they were subjected to compressive, tensile, and three-point bending tests. The results indicate that replacing fly ash with GGBFS significantly influences the mechanical properties of geopolymer concrete. Generally, increasing the GGBFS replacement percentage up to 20 % led to higher compressive strength and reduced porosity. However, increasing the GGBFS from 20 % to 30 % led to lower compressive strength. Increasing the replacement percentage from 0 % to 30 % resulted in an increase in fracture toughness from 16.73 to 27.49 MPa√mm and fracture energy from 54.9 to 156.06 N/m. In conclusion, this study shows that GGBFS can be a suitable substitute for fly ash in geopolymer concrete to some extent. By carefully selecting the ratio of GGBFS to fly ash, geopolymer concrete with desirable mechanical properties, fracture parameters, and durability can be achieved.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Letters
Materials Letters 工程技术-材料科学:综合
CiteScore
5.60
自引率
3.30%
发文量
1948
审稿时长
50 days
期刊介绍: Materials Letters has an open access mirror journal Materials Letters: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. Materials Letters is dedicated to publishing novel, cutting edge reports of broad interest to the materials community. The journal provides a forum for materials scientists and engineers, physicists, and chemists to rapidly communicate on the most important topics in the field of materials. Contributions include, but are not limited to, a variety of topics such as: • Materials - Metals and alloys, amorphous solids, ceramics, composites, polymers, semiconductors • Applications - Structural, opto-electronic, magnetic, medical, MEMS, sensors, smart • Characterization - Analytical, microscopy, scanning probes, nanoscopic, optical, electrical, magnetic, acoustic, spectroscopic, diffraction • Novel Materials - Micro and nanostructures (nanowires, nanotubes, nanoparticles), nanocomposites, thin films, superlattices, quantum dots. • Processing - Crystal growth, thin film processing, sol-gel processing, mechanical processing, assembly, nanocrystalline processing. • Properties - Mechanical, magnetic, optical, electrical, ferroelectric, thermal, interfacial, transport, thermodynamic • Synthesis - Quenching, solid state, solidification, solution synthesis, vapor deposition, high pressure, explosive
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信