Shortening the heat treatment of third generation advanced high strength steels by forming carbide free bainite in the presence of martensite

IF 6.1 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Daniel dos S. Avila , Stefan M.C. van Bohemen , Richard M. Huizenga , S. Erik Offerman , Maria J. Santofimia
{"title":"Shortening the heat treatment of third generation advanced high strength steels by forming carbide free bainite in the presence of martensite","authors":"Daniel dos S. Avila ,&nbsp;Stefan M.C. van Bohemen ,&nbsp;Richard M. Huizenga ,&nbsp;S. Erik Offerman ,&nbsp;Maria J. Santofimia","doi":"10.1016/j.msea.2025.148241","DOIUrl":null,"url":null,"abstract":"<div><div>Successful implementation of third generation advanced high strength steels (3rd gen AHSS) can be accelerated by developing steels that can be heat treated in existing industrial lines. Here, we develop new carbide free bainitic (CFB) steels in which bainite formation is accelerated by a 0.2 volume fraction of prior martensite and thus can be realized in 5 min, making them suitable for manufacturing in modern continuous annealing lines for bare steel strips. The resulting microstructure consists of bainitic ferrite, tempered martensite, and retained austenite. Carbon and silicon had the most pronounced effect on the mechanical properties among the studied alloying elements (manganese, niobium, chromium, and molybdenum) because of their influence on the fraction and stability of retained austenite. Our proposed treatment, which we call bainite accelerated by martensite (BAM), showed higher strength and lower global formability than traditional CFB without prior martensite (also called TRIP-assisted bainitic ferrite, TBF) and quenched and partitioned (Q&amp;P) steels. Five of the designed steels showed tensile strength higher than 1370 MPa, a total elongation higher than 8%, and hole expansion capacity higher than 30%, and thus meet the requirements for the strongest commercial grades of complex phase steels with improved formability. This work broadens the possibilities of using existing industrial lines for manufacturing novel 3rd gen AHSS.</div></div>","PeriodicalId":385,"journal":{"name":"Materials Science and Engineering: A","volume":"931 ","pages":"Article 148241"},"PeriodicalIF":6.1000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: A","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921509325004654","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Successful implementation of third generation advanced high strength steels (3rd gen AHSS) can be accelerated by developing steels that can be heat treated in existing industrial lines. Here, we develop new carbide free bainitic (CFB) steels in which bainite formation is accelerated by a 0.2 volume fraction of prior martensite and thus can be realized in 5 min, making them suitable for manufacturing in modern continuous annealing lines for bare steel strips. The resulting microstructure consists of bainitic ferrite, tempered martensite, and retained austenite. Carbon and silicon had the most pronounced effect on the mechanical properties among the studied alloying elements (manganese, niobium, chromium, and molybdenum) because of their influence on the fraction and stability of retained austenite. Our proposed treatment, which we call bainite accelerated by martensite (BAM), showed higher strength and lower global formability than traditional CFB without prior martensite (also called TRIP-assisted bainitic ferrite, TBF) and quenched and partitioned (Q&P) steels. Five of the designed steels showed tensile strength higher than 1370 MPa, a total elongation higher than 8%, and hole expansion capacity higher than 30%, and thus meet the requirements for the strongest commercial grades of complex phase steels with improved formability. This work broadens the possibilities of using existing industrial lines for manufacturing novel 3rd gen AHSS.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Science and Engineering: A
Materials Science and Engineering: A 工程技术-材料科学:综合
CiteScore
11.50
自引率
15.60%
发文量
1811
审稿时长
31 days
期刊介绍: Materials Science and Engineering A provides an international medium for the publication of theoretical and experimental studies related to the load-bearing capacity of materials as influenced by their basic properties, processing history, microstructure and operating environment. Appropriate submissions to Materials Science and Engineering A should include scientific and/or engineering factors which affect the microstructure - strength relationships of materials and report the changes to mechanical behavior.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信