{"title":"The R-functions combined with the Ritz method: An assessment on the integration schemes","authors":"R. Vescovini","doi":"10.1016/j.compstruct.2025.119066","DOIUrl":null,"url":null,"abstract":"<div><div>This work introduces a method based on the combination of the R-functions and the Ritz method for the static and free vibration analysis of plates, overcoming several limitations commonly associated with Ritz-based approaches. The proposed method enables the study of arbitrary geometries, boundary conditions, and loading configurations while also allowing for the analysis of plates with spatially varying stiffness distributions. The study focuses on the integration techniques employed to construct the governing equations, proposing a novel sub-cell representation method. This approach ensures both robustness and simplicity in implementation, while providing an accurate domain representation and enhanced computational efficiency. Through a series of representative numerical examples and comparisons with benchmark solutions, the influence of integration techniques on solution accuracy and the Ritz upper bound property is examined. The results demonstrate the superior performance of the proposed methodology compared to existing techniques, establishing it as a promising alternative for structural analysis applications.</div></div>","PeriodicalId":281,"journal":{"name":"Composite Structures","volume":"362 ","pages":"Article 119066"},"PeriodicalIF":6.3000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263822325002314","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
This work introduces a method based on the combination of the R-functions and the Ritz method for the static and free vibration analysis of plates, overcoming several limitations commonly associated with Ritz-based approaches. The proposed method enables the study of arbitrary geometries, boundary conditions, and loading configurations while also allowing for the analysis of plates with spatially varying stiffness distributions. The study focuses on the integration techniques employed to construct the governing equations, proposing a novel sub-cell representation method. This approach ensures both robustness and simplicity in implementation, while providing an accurate domain representation and enhanced computational efficiency. Through a series of representative numerical examples and comparisons with benchmark solutions, the influence of integration techniques on solution accuracy and the Ritz upper bound property is examined. The results demonstrate the superior performance of the proposed methodology compared to existing techniques, establishing it as a promising alternative for structural analysis applications.
期刊介绍:
The past few decades have seen outstanding advances in the use of composite materials in structural applications. There can be little doubt that, within engineering circles, composites have revolutionised traditional design concepts and made possible an unparalleled range of new and exciting possibilities as viable materials for construction. Composite Structures, an International Journal, disseminates knowledge between users, manufacturers, designers and researchers involved in structures or structural components manufactured using composite materials.
The journal publishes papers which contribute to knowledge in the use of composite materials in engineering structures. Papers deal with design, research and development studies, experimental investigations, theoretical analysis and fabrication techniques relevant to the application of composites in load-bearing components for assemblies, ranging from individual components such as plates and shells to complete composite structures.