Validation of GEMS operational v2.0 total column NO2 and HCHO during the GMAP/SIJAQ campaign

IF 8.2 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Kangho Bae , Chang-Keun Song , Michel Van Roozendael , Andreas Richter , Thomas Wagner , Alexis Merlaud , Gaia Pinardi , Martina M. Friedrich , Caroline Fayt , Ermioni Dimitropoulou , Kezia Lange , Tim Bösch , Bianca Zilker , Miriam Latsch , Lisa K. Behrens , Steffen Ziegler , Simona Ripperger-Lukosiunaite , Leon Kuhn , Bianca Lauster , Lucas Reischmann , Kwonho Jeon
{"title":"Validation of GEMS operational v2.0 total column NO2 and HCHO during the GMAP/SIJAQ campaign","authors":"Kangho Bae ,&nbsp;Chang-Keun Song ,&nbsp;Michel Van Roozendael ,&nbsp;Andreas Richter ,&nbsp;Thomas Wagner ,&nbsp;Alexis Merlaud ,&nbsp;Gaia Pinardi ,&nbsp;Martina M. Friedrich ,&nbsp;Caroline Fayt ,&nbsp;Ermioni Dimitropoulou ,&nbsp;Kezia Lange ,&nbsp;Tim Bösch ,&nbsp;Bianca Zilker ,&nbsp;Miriam Latsch ,&nbsp;Lisa K. Behrens ,&nbsp;Steffen Ziegler ,&nbsp;Simona Ripperger-Lukosiunaite ,&nbsp;Leon Kuhn ,&nbsp;Bianca Lauster ,&nbsp;Lucas Reischmann ,&nbsp;Kwonho Jeon","doi":"10.1016/j.scitotenv.2025.179190","DOIUrl":null,"url":null,"abstract":"<div><div>The Geostationary Environmental Monitoring Spectrometer (GEMS), the first geostationary air quality instrument, onboard the GEO-KOMPSAT-2B (GK2B) satellite, produces hourly observations over Asia with 3.5 km <span><math><mo>×</mo></math></span> 8 km spatial resolution. To evaluate the GEMS L2 products, the National Institute of Environmental Research (NIER) organized the GEMS Map of Air Pollutants 2021 (GMAP2021) and the Satellite Integrated Joint monitoring of Air Quality 2022 (SIJAQ2022) campaigns during October 2021 to November 2021 and from June 2022 to July 2022, respectively. While GMAP2021 mainly targeted the SMA (Seoul Metropolitan Area), the SIJAQ2022 campaign extended to the southeastern area of South Korea. In this study, a comparison between Pandora and Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) products and an evaluation of the GEMS operational v2.0 total column NO<sub>2</sub> and HCHO products are conducted.</div><div>A comparative analysis between the Pandora (P189) and the IUP Bremen MAX-DOAS instrument at the Incheon NIER-ESC site was performed to analyze discrepancies between the retrieval processors (Pandora: PGN official processor, MAX-DOAS: MMF in FRM<sub>4</sub>DOAS framework). Aligning the viewing directions of both Pandora and MAX-DOAS leads to a significant increase in the slope and correlation coefficient from 0.87 to 0.96 and from 0.86 to 0.96, respectively, in the case of NO<sub>2</sub> tropospheric columns. Similarly, for HCHO tropospheric columns, slope and correlation coefficient change from 0.94 to 1.09 and from 0.81 to 0.90 when matching the viewing geometries of both instruments. In contrast to tropospheric columns, total HCHO columns derived from Pandora (P189) direct-sun measurements show significantly larger values than the MAX-DOAS ones, with a mean relative difference (MRD) of 126 %. This bias can however be reduced to 33 % after suitable adjustment of the direct-sun retrieval settings.</div><div>The GEMS v2.0 NO<sub>2</sub> total column product, evaluated over 6 official PGN sites in South Korea, shows good agreement with a correlation coefficient of 0.87 and similar seasonal and diurnal NO<sub>2</sub> variation. However, GEMS tends to report higher values than Pandora with a mean relative difference of +41 %. The magnitude of the GEMS overestimation is amplified in highly polluted conditions (i.e. during winter and at noontime).</div><div>Compared to 6 MAX-DOAS stations and 6 Pandora stations, the GEMS HCHO product captures well the seasonal and diurnal variation of HCHO and shows good agreement both with MAX-DOAS and Pandora with slopes of 0.84 and 0.79, respectively, and correlation coefficients of 0.86 for both. Large columns, however, tend to be systematically underestimated.</div></div>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":"974 ","pages":"Article 179190"},"PeriodicalIF":8.2000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0048969725008253","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The Geostationary Environmental Monitoring Spectrometer (GEMS), the first geostationary air quality instrument, onboard the GEO-KOMPSAT-2B (GK2B) satellite, produces hourly observations over Asia with 3.5 km × 8 km spatial resolution. To evaluate the GEMS L2 products, the National Institute of Environmental Research (NIER) organized the GEMS Map of Air Pollutants 2021 (GMAP2021) and the Satellite Integrated Joint monitoring of Air Quality 2022 (SIJAQ2022) campaigns during October 2021 to November 2021 and from June 2022 to July 2022, respectively. While GMAP2021 mainly targeted the SMA (Seoul Metropolitan Area), the SIJAQ2022 campaign extended to the southeastern area of South Korea. In this study, a comparison between Pandora and Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) products and an evaluation of the GEMS operational v2.0 total column NO2 and HCHO products are conducted.
A comparative analysis between the Pandora (P189) and the IUP Bremen MAX-DOAS instrument at the Incheon NIER-ESC site was performed to analyze discrepancies between the retrieval processors (Pandora: PGN official processor, MAX-DOAS: MMF in FRM4DOAS framework). Aligning the viewing directions of both Pandora and MAX-DOAS leads to a significant increase in the slope and correlation coefficient from 0.87 to 0.96 and from 0.86 to 0.96, respectively, in the case of NO2 tropospheric columns. Similarly, for HCHO tropospheric columns, slope and correlation coefficient change from 0.94 to 1.09 and from 0.81 to 0.90 when matching the viewing geometries of both instruments. In contrast to tropospheric columns, total HCHO columns derived from Pandora (P189) direct-sun measurements show significantly larger values than the MAX-DOAS ones, with a mean relative difference (MRD) of 126 %. This bias can however be reduced to 33 % after suitable adjustment of the direct-sun retrieval settings.
The GEMS v2.0 NO2 total column product, evaluated over 6 official PGN sites in South Korea, shows good agreement with a correlation coefficient of 0.87 and similar seasonal and diurnal NO2 variation. However, GEMS tends to report higher values than Pandora with a mean relative difference of +41 %. The magnitude of the GEMS overestimation is amplified in highly polluted conditions (i.e. during winter and at noontime).
Compared to 6 MAX-DOAS stations and 6 Pandora stations, the GEMS HCHO product captures well the seasonal and diurnal variation of HCHO and shows good agreement both with MAX-DOAS and Pandora with slopes of 0.84 and 0.79, respectively, and correlation coefficients of 0.86 for both. Large columns, however, tend to be systematically underestimated.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Science of the Total Environment
Science of the Total Environment 环境科学-环境科学
CiteScore
17.60
自引率
10.20%
发文量
8726
审稿时长
2.4 months
期刊介绍: The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere. The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信