Shahrokh Soltaninia , Mehrtash Eskandaripour , Mohammad H. Golmohammadi , Lobat Taghavi , Arvin Mehboodi
{"title":"Nitrate pollution in urban runoff: A comprehensive risk assessment for human and ecological health","authors":"Shahrokh Soltaninia , Mehrtash Eskandaripour , Mohammad H. Golmohammadi , Lobat Taghavi , Arvin Mehboodi","doi":"10.1016/j.scitotenv.2025.179184","DOIUrl":null,"url":null,"abstract":"<div><div>Nitrate pollution in urban runoff poses significant environmental and public health risks, with its impact varying across different land use types. This study investigates nitrate concentrations in runoff from residential, commercial, industrial, and traffic zones in Tehran, Iran, using Event Mean Concentration (EMC) analysis and Monte Carlo simulations to assess both ecological and human health risks. The results indicate that industrial and traffic zones exhibit the highest nitrate concentrations, reaching 58.13 mg/L, significantly exceeding regulatory thresholds. Ecological risk assessments highlight the potential for aquatic system degradation, while health risk evaluations reveal hazard index (HI) values surpassing the safe limit (HI > 4), particularly in industrial and high-traffic areas. These findings underscore the need for targeted mitigation strategies, including the implementation of green infrastructure and stricter pollution control measures, to improve urban water quality and reduce associated risks.</div></div>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":"974 ","pages":"Article 179184"},"PeriodicalIF":8.2000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0048969725008198","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Nitrate pollution in urban runoff poses significant environmental and public health risks, with its impact varying across different land use types. This study investigates nitrate concentrations in runoff from residential, commercial, industrial, and traffic zones in Tehran, Iran, using Event Mean Concentration (EMC) analysis and Monte Carlo simulations to assess both ecological and human health risks. The results indicate that industrial and traffic zones exhibit the highest nitrate concentrations, reaching 58.13 mg/L, significantly exceeding regulatory thresholds. Ecological risk assessments highlight the potential for aquatic system degradation, while health risk evaluations reveal hazard index (HI) values surpassing the safe limit (HI > 4), particularly in industrial and high-traffic areas. These findings underscore the need for targeted mitigation strategies, including the implementation of green infrastructure and stricter pollution control measures, to improve urban water quality and reduce associated risks.
期刊介绍:
The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere.
The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.