{"title":"Optimizing hybrid ventilation in arid Climates: A systematic review and Dubai case study","authors":"Sheikha Al Niyadi, Mohamed H. Elnabawi","doi":"10.1016/j.cacint.2025.100191","DOIUrl":null,"url":null,"abstract":"<div><div>Hybrid ventilation systems, strategically integrating natural and mechanical ventilation, hold significant promise for reducing building cooling energy consumption, particularly in hot climates. This study investigates the effectiveness of such a system in a Dubai office building, aiming to minimize energy use and carbon emissions within a challenging, arid climate where cooling demands are substantial. The research employs a two-pronged methodology. First, a systematic review of 84 research articles published between 2010 and early 2024, encompassing simulations, experiments, and case studies, reveals a wide range of reported energy savings from hybrid ventilation, underscoring the need for standardized performance comparisons. Building upon this foundation, the second phase employs a detailed case study. Using EnergyPlus software, a dynamic energy model of a Dubai office building was created and validated against a year’s worth of actual energy consumption data. This validated model was then modified to simulate implementing a hybrid ventilation system, directly addressing the performance variations highlighted in the literature review. Results demonstrate that the hybrid system can achieve a 23% annual reduction in energy consumption compared to a conventional system, with savings more pronounced during cooler seasons (29%) than in hotter months (13%). Furthermore, the system yielded a 20% reduction in carbon emissions. This research provides compelling, context-specific evidence for the efficacy of hybrid ventilation in reducing building energy consumption and carbon footprint in hot, arid climates, contributing to more sustainable building design practices.</div></div>","PeriodicalId":52395,"journal":{"name":"City and Environment Interactions","volume":"26 ","pages":"Article 100191"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"City and Environment Interactions","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590252025000054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Hybrid ventilation systems, strategically integrating natural and mechanical ventilation, hold significant promise for reducing building cooling energy consumption, particularly in hot climates. This study investigates the effectiveness of such a system in a Dubai office building, aiming to minimize energy use and carbon emissions within a challenging, arid climate where cooling demands are substantial. The research employs a two-pronged methodology. First, a systematic review of 84 research articles published between 2010 and early 2024, encompassing simulations, experiments, and case studies, reveals a wide range of reported energy savings from hybrid ventilation, underscoring the need for standardized performance comparisons. Building upon this foundation, the second phase employs a detailed case study. Using EnergyPlus software, a dynamic energy model of a Dubai office building was created and validated against a year’s worth of actual energy consumption data. This validated model was then modified to simulate implementing a hybrid ventilation system, directly addressing the performance variations highlighted in the literature review. Results demonstrate that the hybrid system can achieve a 23% annual reduction in energy consumption compared to a conventional system, with savings more pronounced during cooler seasons (29%) than in hotter months (13%). Furthermore, the system yielded a 20% reduction in carbon emissions. This research provides compelling, context-specific evidence for the efficacy of hybrid ventilation in reducing building energy consumption and carbon footprint in hot, arid climates, contributing to more sustainable building design practices.