Photo- and magneto-responsive highly CNTs@Fe3O4 Glauber's salt based phase change composites for energy conversion and storage

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS
Yahui Wang , Xin Liu , Jian Tie , Jiexiong Ding , Peiyi Wang , Zipeng Jiang , Shengnian Tie , Changan Wang
{"title":"Photo- and magneto-responsive highly CNTs@Fe3O4 Glauber's salt based phase change composites for energy conversion and storage","authors":"Yahui Wang ,&nbsp;Xin Liu ,&nbsp;Jian Tie ,&nbsp;Jiexiong Ding ,&nbsp;Peiyi Wang ,&nbsp;Zipeng Jiang ,&nbsp;Shengnian Tie ,&nbsp;Changan Wang","doi":"10.1016/j.solmat.2025.113598","DOIUrl":null,"url":null,"abstract":"<div><div>As a crucial component in phase change heat storage systems, phase change materials have demonstrated remarkable application potential across diverse fields, such as solar energy storage systems, magnetic induction energy conversion, and storage. This research reports a high-performance photomagnetically driven composite phase change materials. The photomagnetic response unit was fabricated via the hydrothermal coprecipitation method by in-situ loading of Fe<sub>3</sub>O<sub>4</sub> nanoparticles onto carbon nanotubes (CNTs@Fe<sub>3</sub>O<sub>4</sub>). Subsequently, it was integrated with the Na<sub>2</sub>SO<sub>4</sub>·10H<sub>2</sub>O-Na<sub>2</sub>HPO<sub>4</sub>·12H<sub>2</sub>O eutectic salt to synthesize the composite PCM heat storage material.Experimental findings indicate that the composite incorporating 2.5 % CNTs@Fe<sub>3</sub>O<sub>4</sub> exhibits nearly zero subcooling (ΔT = 0.1 °C), a thermal conductivity as high as 1.0230 W/(m·K), a significant latent heat of phase transformation (melting enthalpy of 253 J/g and solidification enthalpy of 218 J/g), and an enthalpy retention rate of 94.8 % after 1000 thermal cycles. The Fe<sub>3</sub>O<sub>4</sub> endows the material with excellent magneto-thermal conversion performance. Specifically, at a 2.5 % doping content, the temperature increase within 240 s in an alternating magnetic field can reach 67.2 °C through the Néel/Brownian relaxation mechanism. Additionally, the CNTs carrier enhances the photothermal conversion efficiency to 94.5 %. This material combines high thermal conductivity, cycle stability, and dual-field (optical/magnetic) driven heat storage capabilities, thus demonstrating significant application potential in multifunctional thermal energy storage.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"286 ","pages":"Article 113598"},"PeriodicalIF":6.3000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024825001990","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

As a crucial component in phase change heat storage systems, phase change materials have demonstrated remarkable application potential across diverse fields, such as solar energy storage systems, magnetic induction energy conversion, and storage. This research reports a high-performance photomagnetically driven composite phase change materials. The photomagnetic response unit was fabricated via the hydrothermal coprecipitation method by in-situ loading of Fe3O4 nanoparticles onto carbon nanotubes (CNTs@Fe3O4). Subsequently, it was integrated with the Na2SO4·10H2O-Na2HPO4·12H2O eutectic salt to synthesize the composite PCM heat storage material.Experimental findings indicate that the composite incorporating 2.5 % CNTs@Fe3O4 exhibits nearly zero subcooling (ΔT = 0.1 °C), a thermal conductivity as high as 1.0230 W/(m·K), a significant latent heat of phase transformation (melting enthalpy of 253 J/g and solidification enthalpy of 218 J/g), and an enthalpy retention rate of 94.8 % after 1000 thermal cycles. The Fe3O4 endows the material with excellent magneto-thermal conversion performance. Specifically, at a 2.5 % doping content, the temperature increase within 240 s in an alternating magnetic field can reach 67.2 °C through the Néel/Brownian relaxation mechanism. Additionally, the CNTs carrier enhances the photothermal conversion efficiency to 94.5 %. This material combines high thermal conductivity, cycle stability, and dual-field (optical/magnetic) driven heat storage capabilities, thus demonstrating significant application potential in multifunctional thermal energy storage.
作为相变储热系统的重要组成部分,相变材料在太阳能储能系统、磁感应能量转换和储能等多个领域都显示出显著的应用潜力。本研究报告介绍了一种高性能光磁驱动复合相变材料。通过水热共沉淀法,在碳纳米管(CNTs@Fe3O4)上原位负载 Fe3O4 纳米粒子,制备了光磁响应单元。实验结果表明,含有 2.5 % CNTs@Fe3O4 的复合材料的过冷度几乎为零(ΔT = 0.1 °C),热导率高达 1.0230 W/(m-K),相变潜热显著(熔化焓为 253 J/g,凝固焓为 218 J/g),1000 次热循环后的焓保持率为 94.8%。Fe3O4 使该材料具有出色的磁热转换性能。具体来说,当掺杂量为 2.5 % 时,通过奈尔/布朗弛豫机制,在交变磁场中 240 秒内温度可升至 67.2 °C。此外,碳纳米管载体还能将光热转换效率提高到 94.5%。这种材料兼具高热导率、循环稳定性和双(光/磁)场驱动储热能力,因此在多功能热能存储方面具有巨大的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信