Hanun Enani Muhamad Aliza , Abdul Hadi Sulaiman , Aiman Ismail , Fairuz Abdullah , Nelidya Md Yusoff , Siti Azlida Ibrahim , Md Zaini Jamaludin
{"title":"Enhanced multiwavelength random fiber laser based on hybrid optical amplifier incorporating Sagnac loop mirror interferometer","authors":"Hanun Enani Muhamad Aliza , Abdul Hadi Sulaiman , Aiman Ismail , Fairuz Abdullah , Nelidya Md Yusoff , Siti Azlida Ibrahim , Md Zaini Jamaludin","doi":"10.1016/j.rinp.2025.108212","DOIUrl":null,"url":null,"abstract":"<div><div>This work presents an enhanced multiwavelength random fiber laser employing a hybrid optical amplifier in combination with high nonlinearity devices, achieved through the integration of a polarizer with highly nonlinear fiber (HNLF). A Sagnac loop mirror interferometer serves as the comb filtering device, while the hybrid optical amplifier comprises an erbium-doped fiber amplifier (EDFA) and a semiconductor optical amplifier (SOA) as gain media. The SOA’s role in the laser cavity is to mitigate mode competition caused by the homogeneous broadening of the EDFA. The multiwavelength performance is enhanced by introducing nonlinear polarization rotation effect through the interaction of the HNLF, SOA, and polarizer (Condition A). The optimal lasing spectrum features 52 lasing lines within a 3 dB uniformity range and a high extinction ratio (ER) of 20 dB. The multiwavelength bandwidth is 9.5 nm, which is broader compared to previous studies on MWRFLs utilizing a linear cavity configuration. Removing the polarizer (Condition B) reduces the number of lasing lines to 51 and the ER to 19 dB. Furthermore, excluding the HNLF (Condition C) from the linear cavity decreases the spectral flatness and lowers the number of lasing lines to 32. A decrease in EDFA power results in fewer lasing lines, and variations in the angle of polarization controller has changed the ER value. Laser stability was evaluated over 2 hours, showing a peak power fluctuation of approximately 4 dB.</div></div>","PeriodicalId":21042,"journal":{"name":"Results in Physics","volume":"72 ","pages":"Article 108212"},"PeriodicalIF":4.4000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211379725001068","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This work presents an enhanced multiwavelength random fiber laser employing a hybrid optical amplifier in combination with high nonlinearity devices, achieved through the integration of a polarizer with highly nonlinear fiber (HNLF). A Sagnac loop mirror interferometer serves as the comb filtering device, while the hybrid optical amplifier comprises an erbium-doped fiber amplifier (EDFA) and a semiconductor optical amplifier (SOA) as gain media. The SOA’s role in the laser cavity is to mitigate mode competition caused by the homogeneous broadening of the EDFA. The multiwavelength performance is enhanced by introducing nonlinear polarization rotation effect through the interaction of the HNLF, SOA, and polarizer (Condition A). The optimal lasing spectrum features 52 lasing lines within a 3 dB uniformity range and a high extinction ratio (ER) of 20 dB. The multiwavelength bandwidth is 9.5 nm, which is broader compared to previous studies on MWRFLs utilizing a linear cavity configuration. Removing the polarizer (Condition B) reduces the number of lasing lines to 51 and the ER to 19 dB. Furthermore, excluding the HNLF (Condition C) from the linear cavity decreases the spectral flatness and lowers the number of lasing lines to 32. A decrease in EDFA power results in fewer lasing lines, and variations in the angle of polarization controller has changed the ER value. Laser stability was evaluated over 2 hours, showing a peak power fluctuation of approximately 4 dB.
Results in PhysicsMATERIALS SCIENCE, MULTIDISCIPLINARYPHYSIC-PHYSICS, MULTIDISCIPLINARY
CiteScore
8.70
自引率
9.40%
发文量
754
审稿时长
50 days
期刊介绍:
Results in Physics is an open access journal offering authors the opportunity to publish in all fundamental and interdisciplinary areas of physics, materials science, and applied physics. Papers of a theoretical, computational, and experimental nature are all welcome. Results in Physics accepts papers that are scientifically sound, technically correct and provide valuable new knowledge to the physics community. Topics such as three-dimensional flow and magnetohydrodynamics are not within the scope of Results in Physics.
Results in Physics welcomes three types of papers:
1. Full research papers
2. Microarticles: very short papers, no longer than two pages. They may consist of a single, but well-described piece of information, such as:
- Data and/or a plot plus a description
- Description of a new method or instrumentation
- Negative results
- Concept or design study
3. Letters to the Editor: Letters discussing a recent article published in Results in Physics are welcome. These are objective, constructive, or educational critiques of papers published in Results in Physics. Accepted letters will be sent to the author of the original paper for a response. Each letter and response is published together. Letters should be received within 8 weeks of the article''s publication. They should not exceed 750 words of text and 10 references.