MHD flow and heat transfer of Carreau nanofluid with slip effects, and modified Fourier–Fick’s law heat–mass fluxes over a paraboloid surface in porous medium
IF 4.4 2区 物理与天体物理Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
{"title":"MHD flow and heat transfer of Carreau nanofluid with slip effects, and modified Fourier–Fick’s law heat–mass fluxes over a paraboloid surface in porous medium","authors":"Tadesse Lamesse, Wubshet Ibrahim","doi":"10.1016/j.rinp.2025.108201","DOIUrl":null,"url":null,"abstract":"<div><div>This study thoroughly analyzes the steady, three-dimensional boundary layer flow, heat transfer, and mass transfer of MHD Carreau nanofluid over a paraboloid surface embedded in a porous medium. It considers the integrated effects of Coriolis force, velocity slip, thermal radiation, Hall and ion slip, viscous dissipation, non-uniform heat source/sink, and chemical reactions on the flow. Main features of the analysis are the formulation of the Navier stokes equations, energy and concentration equations using the Cattaneo–Christov heat and mass flux models, rather than the classical Fourier’s law and Fick’s law, which is used to account for time relaxation effects. The governing nonlinear, coupled partial differential equations are converted into an ordinary differential system using similarity variables and then solved numerically using the finite element method. Sensitivity analysis using the response surface methodology exhibits the conditions for optimized heat transfer. The noteworthy findings are presented through graphical analyses of fluid flow parameters. The study reveals that the magnetic field slows fluid flow, while velocity increases with Hall and ion slip effects, mixed convection, concentration buoyancy parameters, and the Darcy number. Moreover, temperature increases with Brownian diffusion, the Eckert number, and radiation but decreases with a higher Prandtl number and thermal relaxation time. Moreover, as the Hall and ion slip parameters increase, the velocity profile also intensifies. The analysis reveals that the Prandtl number (Pr) is the dominant parameter, consistently exhibiting the highest Partial rank correlation coefficient(PRCC) value of 0.8650, emphasizing its crucial role in influencing the system’s behavior. Reliability is ensured through grid convergence analysis, and the numerical results were rigorously validated through detailed comparisons with previous studies and benchmark solutions. These findings are particularly relevant for energy systems, materials processing, and other industrial processes involving nanofluids in porous media, where precise control of thermal and fluid flow properties is crucial. Additionally, extending the study to other non-Newtonian fluids will broaden the applicability to a wider range of industrial applications.</div></div>","PeriodicalId":21042,"journal":{"name":"Results in Physics","volume":"72 ","pages":"Article 108201"},"PeriodicalIF":4.4000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211379725000956","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study thoroughly analyzes the steady, three-dimensional boundary layer flow, heat transfer, and mass transfer of MHD Carreau nanofluid over a paraboloid surface embedded in a porous medium. It considers the integrated effects of Coriolis force, velocity slip, thermal radiation, Hall and ion slip, viscous dissipation, non-uniform heat source/sink, and chemical reactions on the flow. Main features of the analysis are the formulation of the Navier stokes equations, energy and concentration equations using the Cattaneo–Christov heat and mass flux models, rather than the classical Fourier’s law and Fick’s law, which is used to account for time relaxation effects. The governing nonlinear, coupled partial differential equations are converted into an ordinary differential system using similarity variables and then solved numerically using the finite element method. Sensitivity analysis using the response surface methodology exhibits the conditions for optimized heat transfer. The noteworthy findings are presented through graphical analyses of fluid flow parameters. The study reveals that the magnetic field slows fluid flow, while velocity increases with Hall and ion slip effects, mixed convection, concentration buoyancy parameters, and the Darcy number. Moreover, temperature increases with Brownian diffusion, the Eckert number, and radiation but decreases with a higher Prandtl number and thermal relaxation time. Moreover, as the Hall and ion slip parameters increase, the velocity profile also intensifies. The analysis reveals that the Prandtl number (Pr) is the dominant parameter, consistently exhibiting the highest Partial rank correlation coefficient(PRCC) value of 0.8650, emphasizing its crucial role in influencing the system’s behavior. Reliability is ensured through grid convergence analysis, and the numerical results were rigorously validated through detailed comparisons with previous studies and benchmark solutions. These findings are particularly relevant for energy systems, materials processing, and other industrial processes involving nanofluids in porous media, where precise control of thermal and fluid flow properties is crucial. Additionally, extending the study to other non-Newtonian fluids will broaden the applicability to a wider range of industrial applications.
Results in PhysicsMATERIALS SCIENCE, MULTIDISCIPLINARYPHYSIC-PHYSICS, MULTIDISCIPLINARY
CiteScore
8.70
自引率
9.40%
发文量
754
审稿时长
50 days
期刊介绍:
Results in Physics is an open access journal offering authors the opportunity to publish in all fundamental and interdisciplinary areas of physics, materials science, and applied physics. Papers of a theoretical, computational, and experimental nature are all welcome. Results in Physics accepts papers that are scientifically sound, technically correct and provide valuable new knowledge to the physics community. Topics such as three-dimensional flow and magnetohydrodynamics are not within the scope of Results in Physics.
Results in Physics welcomes three types of papers:
1. Full research papers
2. Microarticles: very short papers, no longer than two pages. They may consist of a single, but well-described piece of information, such as:
- Data and/or a plot plus a description
- Description of a new method or instrumentation
- Negative results
- Concept or design study
3. Letters to the Editor: Letters discussing a recent article published in Results in Physics are welcome. These are objective, constructive, or educational critiques of papers published in Results in Physics. Accepted letters will be sent to the author of the original paper for a response. Each letter and response is published together. Letters should be received within 8 weeks of the article''s publication. They should not exceed 750 words of text and 10 references.