High-velocity laser-driven flyer impact on paraffin gel

IF 5.1 2区 工程技术 Q1 ENGINEERING, MECHANICAL
B. Reynier , R.M. Mircioaga , J. Le Clanche , L. Taddei , J.-M. Chevalier , D. Hébert , M. Arrigoni
{"title":"High-velocity laser-driven flyer impact on paraffin gel","authors":"B. Reynier ,&nbsp;R.M. Mircioaga ,&nbsp;J. Le Clanche ,&nbsp;L. Taddei ,&nbsp;J.-M. Chevalier ,&nbsp;D. Hébert ,&nbsp;M. Arrigoni","doi":"10.1016/j.ijimpeng.2025.105311","DOIUrl":null,"url":null,"abstract":"<div><div>The penetrating ballistic impact of thin 100 micrometers aluminum projectiles, accelerated at high velocities by laser-induced shock wave, on parafin gel is investigated. The laser-driven flyer experiments were conducted at BELENOS laser facility and allow the acceleration of projectile at high velocity ranging from 170 m<!--> <!-->s<span><math><msup><mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> to 710 m<!--> <!-->s<span><math><msup><mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>. The projectile is monitored during impact and penetration into gel targets using shadowgraphy with ultra-high speed camera. Its velocity is recorded by fast-imaging technics and correlated to Photonic Doppler Velocimeter (PDV) measurements. The ballistic impact phenomena such as the splash ejection on the front face of the gel target and the cavitation effect are analyzed. The strength resistance parameter in the Poncelet model of the gel is obtained from experimental data fit, which predicts the speed of a given fragment from its penetration depth in the target. The cavity dynamics highlights the influence of the strain rate on the mechanical behavior of paraffin gel target under penetrating ballistic impact.</div></div>","PeriodicalId":50318,"journal":{"name":"International Journal of Impact Engineering","volume":"202 ","pages":"Article 105311"},"PeriodicalIF":5.1000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Impact Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0734743X25000922","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The penetrating ballistic impact of thin 100 micrometers aluminum projectiles, accelerated at high velocities by laser-induced shock wave, on parafin gel is investigated. The laser-driven flyer experiments were conducted at BELENOS laser facility and allow the acceleration of projectile at high velocity ranging from 170 m s1 to 710 m s1. The projectile is monitored during impact and penetration into gel targets using shadowgraphy with ultra-high speed camera. Its velocity is recorded by fast-imaging technics and correlated to Photonic Doppler Velocimeter (PDV) measurements. The ballistic impact phenomena such as the splash ejection on the front face of the gel target and the cavitation effect are analyzed. The strength resistance parameter in the Poncelet model of the gel is obtained from experimental data fit, which predicts the speed of a given fragment from its penetration depth in the target. The cavity dynamics highlights the influence of the strain rate on the mechanical behavior of paraffin gel target under penetrating ballistic impact.
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Impact Engineering
International Journal of Impact Engineering 工程技术-工程:机械
CiteScore
8.70
自引率
13.70%
发文量
241
审稿时长
52 days
期刊介绍: The International Journal of Impact Engineering, established in 1983 publishes original research findings related to the response of structures, components and materials subjected to impact, blast and high-rate loading. Areas relevant to the journal encompass the following general topics and those associated with them: -Behaviour and failure of structures and materials under impact and blast loading -Systems for protection and absorption of impact and blast loading -Terminal ballistics -Dynamic behaviour and failure of materials including plasticity and fracture -Stress waves -Structural crashworthiness -High-rate mechanical and forming processes -Impact, blast and high-rate loading/measurement techniques and their applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信