B. Reynier , R.M. Mircioaga , J. Le Clanche , L. Taddei , J.-M. Chevalier , D. Hébert , M. Arrigoni
{"title":"High-velocity laser-driven flyer impact on paraffin gel","authors":"B. Reynier , R.M. Mircioaga , J. Le Clanche , L. Taddei , J.-M. Chevalier , D. Hébert , M. Arrigoni","doi":"10.1016/j.ijimpeng.2025.105311","DOIUrl":null,"url":null,"abstract":"<div><div>The penetrating ballistic impact of thin 100 micrometers aluminum projectiles, accelerated at high velocities by laser-induced shock wave, on parafin gel is investigated. The laser-driven flyer experiments were conducted at BELENOS laser facility and allow the acceleration of projectile at high velocity ranging from 170 m<!--> <!-->s<span><math><msup><mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> to 710 m<!--> <!-->s<span><math><msup><mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>. The projectile is monitored during impact and penetration into gel targets using shadowgraphy with ultra-high speed camera. Its velocity is recorded by fast-imaging technics and correlated to Photonic Doppler Velocimeter (PDV) measurements. The ballistic impact phenomena such as the splash ejection on the front face of the gel target and the cavitation effect are analyzed. The strength resistance parameter in the Poncelet model of the gel is obtained from experimental data fit, which predicts the speed of a given fragment from its penetration depth in the target. The cavity dynamics highlights the influence of the strain rate on the mechanical behavior of paraffin gel target under penetrating ballistic impact.</div></div>","PeriodicalId":50318,"journal":{"name":"International Journal of Impact Engineering","volume":"202 ","pages":"Article 105311"},"PeriodicalIF":5.1000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Impact Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0734743X25000922","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The penetrating ballistic impact of thin 100 micrometers aluminum projectiles, accelerated at high velocities by laser-induced shock wave, on parafin gel is investigated. The laser-driven flyer experiments were conducted at BELENOS laser facility and allow the acceleration of projectile at high velocity ranging from 170 m s to 710 m s. The projectile is monitored during impact and penetration into gel targets using shadowgraphy with ultra-high speed camera. Its velocity is recorded by fast-imaging technics and correlated to Photonic Doppler Velocimeter (PDV) measurements. The ballistic impact phenomena such as the splash ejection on the front face of the gel target and the cavitation effect are analyzed. The strength resistance parameter in the Poncelet model of the gel is obtained from experimental data fit, which predicts the speed of a given fragment from its penetration depth in the target. The cavity dynamics highlights the influence of the strain rate on the mechanical behavior of paraffin gel target under penetrating ballistic impact.
期刊介绍:
The International Journal of Impact Engineering, established in 1983 publishes original research findings related to the response of structures, components and materials subjected to impact, blast and high-rate loading. Areas relevant to the journal encompass the following general topics and those associated with them:
-Behaviour and failure of structures and materials under impact and blast loading
-Systems for protection and absorption of impact and blast loading
-Terminal ballistics
-Dynamic behaviour and failure of materials including plasticity and fracture
-Stress waves
-Structural crashworthiness
-High-rate mechanical and forming processes
-Impact, blast and high-rate loading/measurement techniques and their applications