{"title":"Shock resistance of a bio-inspired double corrugated sandwich panel impacted by a graded cellular projectile","authors":"Xiaofei Yi , Kefeng Peng , Baixue Chang , Yuanrui Zhang , Jilin Yu , Zhijun Zheng","doi":"10.1016/j.ijimpeng.2025.105313","DOIUrl":null,"url":null,"abstract":"<div><div>Sandwich structures with a thin-walled core layer exhibit remarkable shock resistance, but most of them suffer from high initial peak stress, limiting their load mitigation ability. Inspired by the S-shaped corrugated wall of the cuttlefish bone and the herringbone corrugation of <span><math><mrow><mi>O</mi><mi>d</mi><mi>o</mi><mi>n</mi><mi>t</mi><mi>o</mi><mi>d</mi><mi>a</mi><mi>c</mi><mi>t</mi><mi>y</mi><mi>l</mi><mi>u</mi><mi>s</mi></mrow></math></span> <span><math><mrow><mi>s</mi><mi>y</mi><mi>l</mi><mi>l</mi><mi>a</mi><mi>b</mi><mi>u</mi><mi>s</mi></mrow></math></span> dactyl, a sandwich panel with a bio-inspired double corrugated (BDC) core is proposed to enhance the shock resistance. Impact simulations and experiments using graded cellular projectiles were conducted to analyze the effects of core layer configuration on the shock resistance performance of the sandwich panels and to validate the necessity of well-designed graded cellular projectiles in simulating blast loads. It is found that compared to hexagonal honeycomb and bio-inspired single corrugated sandwich panels of the same density, the BDC sandwich panels exhibit superior shock resistance performance, with a reduction of 97.9% and 40.7% in maximum transmission stress and maximum deformation, and an increase of 38.0% in crushing force efficiency. The maximum transmission stress of the BDC sandwich panel is mitigated by the herringbone corrugations, and higher plateau stress is achieved. The underlying mechanism is that herringbone corrugations change the deformation mode, causing less plastic deformation at impact onset to attenuate peak stress, and later generating more wrinkles to increase plateau stress. A stable plateau stress and deformation during impact are guaranteed by the non-hermetic corrugated walls because they permit air to escape, avoiding strain hardening. The present findings provide a new inspiration and method for novel protective structure design and testing.</div></div>","PeriodicalId":50318,"journal":{"name":"International Journal of Impact Engineering","volume":"202 ","pages":"Article 105313"},"PeriodicalIF":5.1000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Impact Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0734743X25000946","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Sandwich structures with a thin-walled core layer exhibit remarkable shock resistance, but most of them suffer from high initial peak stress, limiting their load mitigation ability. Inspired by the S-shaped corrugated wall of the cuttlefish bone and the herringbone corrugation of dactyl, a sandwich panel with a bio-inspired double corrugated (BDC) core is proposed to enhance the shock resistance. Impact simulations and experiments using graded cellular projectiles were conducted to analyze the effects of core layer configuration on the shock resistance performance of the sandwich panels and to validate the necessity of well-designed graded cellular projectiles in simulating blast loads. It is found that compared to hexagonal honeycomb and bio-inspired single corrugated sandwich panels of the same density, the BDC sandwich panels exhibit superior shock resistance performance, with a reduction of 97.9% and 40.7% in maximum transmission stress and maximum deformation, and an increase of 38.0% in crushing force efficiency. The maximum transmission stress of the BDC sandwich panel is mitigated by the herringbone corrugations, and higher plateau stress is achieved. The underlying mechanism is that herringbone corrugations change the deformation mode, causing less plastic deformation at impact onset to attenuate peak stress, and later generating more wrinkles to increase plateau stress. A stable plateau stress and deformation during impact are guaranteed by the non-hermetic corrugated walls because they permit air to escape, avoiding strain hardening. The present findings provide a new inspiration and method for novel protective structure design and testing.
期刊介绍:
The International Journal of Impact Engineering, established in 1983 publishes original research findings related to the response of structures, components and materials subjected to impact, blast and high-rate loading. Areas relevant to the journal encompass the following general topics and those associated with them:
-Behaviour and failure of structures and materials under impact and blast loading
-Systems for protection and absorption of impact and blast loading
-Terminal ballistics
-Dynamic behaviour and failure of materials including plasticity and fracture
-Stress waves
-Structural crashworthiness
-High-rate mechanical and forming processes
-Impact, blast and high-rate loading/measurement techniques and their applications