Ling Li , Fei Gao , Huanrong Zhang , Yang Yu , Baojin Ma , Shaohua Ge
{"title":"A protective growth factor delivery strategy based on polyphenol-protein self-assembly to promote inflammatory bone regeneration","authors":"Ling Li , Fei Gao , Huanrong Zhang , Yang Yu , Baojin Ma , Shaohua Ge","doi":"10.1016/j.biomaterials.2025.123272","DOIUrl":null,"url":null,"abstract":"<div><div>The efficacy of growth factor delivery-based therapies for bone tissue regeneration is frequently undermined by oxidative stress, especially under inflammatory conditions, which results in structure damage and function inactivation of growth factors. Herein, a straightforward and universal protective delivery strategy is proposed by employing the multiple physical interactions between epigallocatechin-3-gallate (EGCG) and growth factors (e.g., neuregulin-1/NRG-1) to efficiently form self-assembled particles (NE APs). NE APs provide sustained release of NRG-1 while protecting it from oxidative damage, preserving its biological functions of cell recruitment, migration, and angiogenesis. Additionally, NE APs leverage EGCG's ability to scavenge reactive oxygen species and maintain mitochondrial homeostasis, while synergistically enhancing TNF/NF-κB/JAK-STAT signaling pathways to support immune responses and osteogenic differentiation. In vivo experiments demonstrated that NE APs create a favorable microenvironment for bone regeneration through stem cell recruitment, angiogenesis, and immune modulation, effectively promoting the repair of inflammatory bone defects. This versatile protective delivery strategy, based on polyphenol and growth factor self-assembly, offers the potential to advance the application of growth factors in regenerative medicine.</div></div>","PeriodicalId":254,"journal":{"name":"Biomaterials","volume":"320 ","pages":"Article 123272"},"PeriodicalIF":12.8000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142961225001917","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The efficacy of growth factor delivery-based therapies for bone tissue regeneration is frequently undermined by oxidative stress, especially under inflammatory conditions, which results in structure damage and function inactivation of growth factors. Herein, a straightforward and universal protective delivery strategy is proposed by employing the multiple physical interactions between epigallocatechin-3-gallate (EGCG) and growth factors (e.g., neuregulin-1/NRG-1) to efficiently form self-assembled particles (NE APs). NE APs provide sustained release of NRG-1 while protecting it from oxidative damage, preserving its biological functions of cell recruitment, migration, and angiogenesis. Additionally, NE APs leverage EGCG's ability to scavenge reactive oxygen species and maintain mitochondrial homeostasis, while synergistically enhancing TNF/NF-κB/JAK-STAT signaling pathways to support immune responses and osteogenic differentiation. In vivo experiments demonstrated that NE APs create a favorable microenvironment for bone regeneration through stem cell recruitment, angiogenesis, and immune modulation, effectively promoting the repair of inflammatory bone defects. This versatile protective delivery strategy, based on polyphenol and growth factor self-assembly, offers the potential to advance the application of growth factors in regenerative medicine.
期刊介绍:
Biomaterials is an international journal covering the science and clinical application of biomaterials. A biomaterial is now defined as a substance that has been engineered to take a form which, alone or as part of a complex system, is used to direct, by control of interactions with components of living systems, the course of any therapeutic or diagnostic procedure. It is the aim of the journal to provide a peer-reviewed forum for the publication of original papers and authoritative review and opinion papers dealing with the most important issues facing the use of biomaterials in clinical practice. The scope of the journal covers the wide range of physical, biological and chemical sciences that underpin the design of biomaterials and the clinical disciplines in which they are used. These sciences include polymer synthesis and characterization, drug and gene vector design, the biology of the host response, immunology and toxicology and self assembly at the nanoscale. Clinical applications include the therapies of medical technology and regenerative medicine in all clinical disciplines, and diagnostic systems that reply on innovative contrast and sensing agents. The journal is relevant to areas such as cancer diagnosis and therapy, implantable devices, drug delivery systems, gene vectors, bionanotechnology and tissue engineering.