Sustainable strategies for preventive maintenance and replacement in photovoltaic power systems: Enhancing reliability, efficiency, and system economy

Bashar Mahmood Ali , Tariq J‏. Al‏-‏Musawi , Aymen Mohammed , Hassan Falah Fakhruldeen , Talib Munshid Hanoon , Azizbek Khurramov , Doaa H. Khalaf , Sameer Algburi
{"title":"Sustainable strategies for preventive maintenance and replacement in photovoltaic power systems: Enhancing reliability, efficiency, and system economy","authors":"Bashar Mahmood Ali ,&nbsp;Tariq J‏. Al‏-‏Musawi ,&nbsp;Aymen Mohammed ,&nbsp;Hassan Falah Fakhruldeen ,&nbsp;Talib Munshid Hanoon ,&nbsp;Azizbek Khurramov ,&nbsp;Doaa H. Khalaf ,&nbsp;Sameer Algburi","doi":"10.1016/j.uncres.2025.100170","DOIUrl":null,"url":null,"abstract":"<div><div>This study proposes a preventive maintenance and replacement strategy for photovoltaic (PV) power generation systems, addressing reliability as a key constraint. The research introduces a novel approach incorporating service age regression and failure rate increment factors to model PV equipment degradation. A flexible, non-periodic, and incomplete maintenance model is developed, optimizing maintenance cycles, pre-repair counts, and replacement schedules to balance maintenance costs and equipment availability. The model effectively mitigates the risks of over- or under-maintenance. Comparative analysis demonstrates that the proposed strategy, with an optimal maintenance setting of 0.913, reduces average maintenance costs by 21.4 % and 6.22 % while increasing equipment availability by 0.2411 % and 0.03222 %, compared to an equal-cycle maintenance model without reliability constraints and a model that disregards equipment replacement thresholds. These findings highlight the model's effectiveness in ensuring high operational reliability and economic efficiency of PV plants. The study contributes a novel optimization framework that enhances PV system sustainability by integrating reliability-driven maintenance and replacement decisions. However, it does not consider component correlations within PV systems.</div></div>","PeriodicalId":101263,"journal":{"name":"Unconventional Resources","volume":"6 ","pages":"Article 100170"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Unconventional Resources","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666519025000366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study proposes a preventive maintenance and replacement strategy for photovoltaic (PV) power generation systems, addressing reliability as a key constraint. The research introduces a novel approach incorporating service age regression and failure rate increment factors to model PV equipment degradation. A flexible, non-periodic, and incomplete maintenance model is developed, optimizing maintenance cycles, pre-repair counts, and replacement schedules to balance maintenance costs and equipment availability. The model effectively mitigates the risks of over- or under-maintenance. Comparative analysis demonstrates that the proposed strategy, with an optimal maintenance setting of 0.913, reduces average maintenance costs by 21.4 % and 6.22 % while increasing equipment availability by 0.2411 % and 0.03222 %, compared to an equal-cycle maintenance model without reliability constraints and a model that disregards equipment replacement thresholds. These findings highlight the model's effectiveness in ensuring high operational reliability and economic efficiency of PV plants. The study contributes a novel optimization framework that enhances PV system sustainability by integrating reliability-driven maintenance and replacement decisions. However, it does not consider component correlations within PV systems.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信