Multi-GPU parallelization of shallow water modelling on unstructured meshes

IF 5.9 1区 地球科学 Q1 ENGINEERING, CIVIL
Boliang Dong , Bensheng Huang , Chao Tan , Junqiang Xia , Kairong Lin , Shuailing Gao , Yong Hu
{"title":"Multi-GPU parallelization of shallow water modelling on unstructured meshes","authors":"Boliang Dong ,&nbsp;Bensheng Huang ,&nbsp;Chao Tan ,&nbsp;Junqiang Xia ,&nbsp;Kairong Lin ,&nbsp;Shuailing Gao ,&nbsp;Yong Hu","doi":"10.1016/j.jhydrol.2025.133105","DOIUrl":null,"url":null,"abstract":"<div><div>Floods are one of the most devastating natural hazards globally, causing significant loss of life and extensive economic damage. Shallow water equation (SWE) models, due to their clear physical mechanism and good accuracy, can provide detailed predictions of flood behaviour, which are essential for flood risk evaluation and mitigation. However, traditional SWE models face significant limitations in supporting large-scale, long-duration, and high-resolution numerical simulations, which are increasingly demanded by modern applications such as flood forecasting and the establishment of warning systems. In response to the increasing demand for rapid and accurate flood modelling, this study presents a multi-GPU accelerated unstructured mesh SWE model. The proposed model employs MPI-OpenACC method to facilitate multi-GPU parallel computing for hydrodynamic simulations and incorporates a novel asynchronous communication strategy aimed at minimizing the overhead associated with parallel communication. Three representative flood cases were employed to assess the accuracy and efficiency of the proposed model. The results indicated that the speedup of the proposed model reached more than 800 when using eight GPUs in parallel, and the model could simulate a 30 h extreme flood in a 1,300 km<sup>2</sup> watershed within 0.35 h. Multi-GPU parallel computing holds great promise for applications in rapid flood simulation and real-time risk assessment.</div></div>","PeriodicalId":362,"journal":{"name":"Journal of Hydrology","volume":"657 ","pages":"Article 133105"},"PeriodicalIF":5.9000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022169425004433","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

Floods are one of the most devastating natural hazards globally, causing significant loss of life and extensive economic damage. Shallow water equation (SWE) models, due to their clear physical mechanism and good accuracy, can provide detailed predictions of flood behaviour, which are essential for flood risk evaluation and mitigation. However, traditional SWE models face significant limitations in supporting large-scale, long-duration, and high-resolution numerical simulations, which are increasingly demanded by modern applications such as flood forecasting and the establishment of warning systems. In response to the increasing demand for rapid and accurate flood modelling, this study presents a multi-GPU accelerated unstructured mesh SWE model. The proposed model employs MPI-OpenACC method to facilitate multi-GPU parallel computing for hydrodynamic simulations and incorporates a novel asynchronous communication strategy aimed at minimizing the overhead associated with parallel communication. Three representative flood cases were employed to assess the accuracy and efficiency of the proposed model. The results indicated that the speedup of the proposed model reached more than 800 when using eight GPUs in parallel, and the model could simulate a 30 h extreme flood in a 1,300 km2 watershed within 0.35 h. Multi-GPU parallel computing holds great promise for applications in rapid flood simulation and real-time risk assessment.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Hydrology
Journal of Hydrology 地学-地球科学综合
CiteScore
11.00
自引率
12.50%
发文量
1309
审稿时长
7.5 months
期刊介绍: The Journal of Hydrology publishes original research papers and comprehensive reviews in all the subfields of the hydrological sciences including water based management and policy issues that impact on economics and society. These comprise, but are not limited to the physical, chemical, biogeochemical, stochastic and systems aspects of surface and groundwater hydrology, hydrometeorology and hydrogeology. Relevant topics incorporating the insights and methodologies of disciplines such as climatology, water resource systems, hydraulics, agrohydrology, geomorphology, soil science, instrumentation and remote sensing, civil and environmental engineering are included. Social science perspectives on hydrological problems such as resource and ecological economics, environmental sociology, psychology and behavioural science, management and policy analysis are also invited. Multi-and interdisciplinary analyses of hydrological problems are within scope. The science published in the Journal of Hydrology is relevant to catchment scales rather than exclusively to a local scale or site.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信