A review on scale-up approaches for ultrasound-assisted extraction of natural products

IF 8 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Vitoria H Cauduro , Gustavo Gohlke , Nicole W da Silva , Adriano G Cruz , Erico MM Flores
{"title":"A review on scale-up approaches for ultrasound-assisted extraction of natural products","authors":"Vitoria H Cauduro ,&nbsp;Gustavo Gohlke ,&nbsp;Nicole W da Silva ,&nbsp;Adriano G Cruz ,&nbsp;Erico MM Flores","doi":"10.1016/j.coche.2025.101120","DOIUrl":null,"url":null,"abstract":"<div><div>The extraction of bioactive compounds from natural sources is a topic of great interest. In this sense, ultrasound-assisted extraction (UAE) has emerged as a promising technology for fast and efficient extraction of natural products without high organic solvent consumption. However, most studies on UAE are focused on laboratory scale. In order for this technology to be suitable for industrial applications, more pilot studies need to be developed and discussed. In this sense, this review aimed to address scale-up applications of UAE of natural products developed from 2019 to the first semester of 2024. Applications involving hydrodynamic cavitation were not included in this review. Key parameters related to ultrasound were addressed, such as reactor configuration, process type (batch or continuous), frequency, and others. Furthermore, the major challenges associated with the upscaling of UAE, as well as current trends and future perspectives were discussed. It was observed that flow cells were the main reactor type used in scale-up UAE of natural products and that flow-through was the main operation mode. The use of these devices enabled processing of higher sample volumes, possibly due to more homogeneous energy distribution in the reactor. Hence, further enhancements in this area should be expected. Furthermore, phenolic compounds were the main targets of extraction and low frequencies (&lt;100 kHz) were used. However, a challenge remains regarding the lack of essential information in several publications, which makes comparison between studies difficult, as well as their reproduction. Nevertheless, scale-up UAE of natural products is a promising research area.</div></div>","PeriodicalId":292,"journal":{"name":"Current Opinion in Chemical Engineering","volume":"48 ","pages":"Article 101120"},"PeriodicalIF":8.0000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211339825000310","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The extraction of bioactive compounds from natural sources is a topic of great interest. In this sense, ultrasound-assisted extraction (UAE) has emerged as a promising technology for fast and efficient extraction of natural products without high organic solvent consumption. However, most studies on UAE are focused on laboratory scale. In order for this technology to be suitable for industrial applications, more pilot studies need to be developed and discussed. In this sense, this review aimed to address scale-up applications of UAE of natural products developed from 2019 to the first semester of 2024. Applications involving hydrodynamic cavitation were not included in this review. Key parameters related to ultrasound were addressed, such as reactor configuration, process type (batch or continuous), frequency, and others. Furthermore, the major challenges associated with the upscaling of UAE, as well as current trends and future perspectives were discussed. It was observed that flow cells were the main reactor type used in scale-up UAE of natural products and that flow-through was the main operation mode. The use of these devices enabled processing of higher sample volumes, possibly due to more homogeneous energy distribution in the reactor. Hence, further enhancements in this area should be expected. Furthermore, phenolic compounds were the main targets of extraction and low frequencies (<100 kHz) were used. However, a challenge remains regarding the lack of essential information in several publications, which makes comparison between studies difficult, as well as their reproduction. Nevertheless, scale-up UAE of natural products is a promising research area.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Opinion in Chemical Engineering
Current Opinion in Chemical Engineering BIOTECHNOLOGY & APPLIED MICROBIOLOGYENGINE-ENGINEERING, CHEMICAL
CiteScore
12.80
自引率
3.00%
发文量
114
期刊介绍: Current Opinion in Chemical Engineering is devoted to bringing forth short and focused review articles written by experts on current advances in different areas of chemical engineering. Only invited review articles will be published. The goals of each review article in Current Opinion in Chemical Engineering are: 1. To acquaint the reader/researcher with the most important recent papers in the given topic. 2. To provide the reader with the views/opinions of the expert in each topic. The reviews are short (about 2500 words or 5-10 printed pages with figures) and serve as an invaluable source of information for researchers, teachers, professionals and students. The reviews also aim to stimulate exchange of ideas among experts. Themed sections: Each review will focus on particular aspects of one of the following themed sections of chemical engineering: 1. Nanotechnology 2. Energy and environmental engineering 3. Biotechnology and bioprocess engineering 4. Biological engineering (covering tissue engineering, regenerative medicine, drug delivery) 5. Separation engineering (covering membrane technologies, adsorbents, desalination, distillation etc.) 6. Materials engineering (covering biomaterials, inorganic especially ceramic materials, nanostructured materials). 7. Process systems engineering 8. Reaction engineering and catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信