Bei Lin , Jinyi Lin , Zhiyu Song , Miao Zhang , Ying Chen , Yujia Ma , Weimin Xu , Shilong Sun , Zhen Luan , Lihong Gao , Wenna Zhang
{"title":"Hydrogen-rich water enhances vegetable growth and fruit quality by regulating ascorbate biosynthesis","authors":"Bei Lin , Jinyi Lin , Zhiyu Song , Miao Zhang , Ying Chen , Yujia Ma , Weimin Xu , Shilong Sun , Zhen Luan , Lihong Gao , Wenna Zhang","doi":"10.1016/j.plaphy.2025.109790","DOIUrl":null,"url":null,"abstract":"<div><div>Under aerobic conditions, the growth and fruit quality of vegetable crops are significantly influenced by reactive oxygen species (ROS) metabolism. Hydrogen-rich water (HRW) has emerged as a promising tool for enhancing resistance to abiotic stresses and delaying postharvest ripening and senescence. However, the physiological response and adaptation mechanisms of vegetable crops to HRW remain rarely understood. This study explores the effects of low concentrations of HRW on the growth and physiological processes of lettuce, tomato, and cucumber. The results indicate that HRW enhances seedling vigor, boosts photosynthetic efficiency, and promotes biomass accumulation. Additionally, HRW-irrigated cucumber fruit showed a 15–20 % increase in vitamin C (ascorbic acid) content, a 10–15 % rise in soluble sucrose levels, and an increase in fruit weight and diameter by 25–35 % and 8–12 %, respectively. Transcriptomic analyses revealed variations in genes associated with carbon fixation in photosynthesis, glyoxylate and dicarboxylate metabolism, hormonal regulation, and phenylalanine metabolism. These findings illuminate the mechanisms behind improved antioxidant production and L-ascorbate biosynthesis. Notably, this marks the documented case of HRW irrigation enhancing natural antioxidants in fruits. Given the unique properties of hydrogen and the potential of HRW technology in horticultural industry, the findings of this study provide valuable insights into hydrogen's role in biological processes and its impact on vegetable crops production and fruit quality.</div></div>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"223 ","pages":"Article 109790"},"PeriodicalIF":6.1000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0981942825003183","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Under aerobic conditions, the growth and fruit quality of vegetable crops are significantly influenced by reactive oxygen species (ROS) metabolism. Hydrogen-rich water (HRW) has emerged as a promising tool for enhancing resistance to abiotic stresses and delaying postharvest ripening and senescence. However, the physiological response and adaptation mechanisms of vegetable crops to HRW remain rarely understood. This study explores the effects of low concentrations of HRW on the growth and physiological processes of lettuce, tomato, and cucumber. The results indicate that HRW enhances seedling vigor, boosts photosynthetic efficiency, and promotes biomass accumulation. Additionally, HRW-irrigated cucumber fruit showed a 15–20 % increase in vitamin C (ascorbic acid) content, a 10–15 % rise in soluble sucrose levels, and an increase in fruit weight and diameter by 25–35 % and 8–12 %, respectively. Transcriptomic analyses revealed variations in genes associated with carbon fixation in photosynthesis, glyoxylate and dicarboxylate metabolism, hormonal regulation, and phenylalanine metabolism. These findings illuminate the mechanisms behind improved antioxidant production and L-ascorbate biosynthesis. Notably, this marks the documented case of HRW irrigation enhancing natural antioxidants in fruits. Given the unique properties of hydrogen and the potential of HRW technology in horticultural industry, the findings of this study provide valuable insights into hydrogen's role in biological processes and its impact on vegetable crops production and fruit quality.
期刊介绍:
Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement.
Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB.
Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.