Yifeng Zou , Junzhang Wu , Xiangchao Meng , Xinfang Wang , Alessandro Manzardo
{"title":"Digital twin integration for dynamic quality loss control in fruit supply chains","authors":"Yifeng Zou , Junzhang Wu , Xiangchao Meng , Xinfang Wang , Alessandro Manzardo","doi":"10.1016/j.jfoodeng.2025.112577","DOIUrl":null,"url":null,"abstract":"<div><div>Effective cold chain management is imperative for minimizing food loss and maintaining quality in perishable logistics. This study integrates digital twin (DT) and artificial intelligence (AI) technologies to establish a “five-dimensional model” for cold supply chains, featuring a two-step approach that improve temperature prediction accuracy for shelf-life estimation. In the first step, a long short-term memory (LSTM) based model—trained solely on experimentally verified temperature data—accurately forecasts in-box conditions. Subsequently, a literature-based kinetic model applies well-established parameters to estimate remaining shelf life. By placing a single sensor at the pallet level and applying our box-level digital twin model, we achieved a temperature prediction error below ±0.3 °C (2σ), which translated into a shelf-life estimation error of under ±1.2 days for highly perishable fruits such as strawberries and lychees. Simulations also reveal the integrated DT–AI system reduces food loss by 8.6 %, 12.1 %, 13.6 %, and 15.5 % for strawberries, lychees, oranges, and apples, respectively, surpassing simpler ambient-based methods in both accuracy and food safety—particularly for highly perishable produce. Although hierarchical scaling of DTs (box, pallet, container) indicates increasing deviations at larger units, this trade-off between model precision and resource efficiency renders the solution practical across diverse cold-supply scenarios. Future work may incorporate end-point quality assessments and advanced management modules to further enhance reliability, reduce waste, and foster sustainability in global food logistics.</div></div>","PeriodicalId":359,"journal":{"name":"Journal of Food Engineering","volume":"397 ","pages":"Article 112577"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Engineering","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0260877425001128","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Effective cold chain management is imperative for minimizing food loss and maintaining quality in perishable logistics. This study integrates digital twin (DT) and artificial intelligence (AI) technologies to establish a “five-dimensional model” for cold supply chains, featuring a two-step approach that improve temperature prediction accuracy for shelf-life estimation. In the first step, a long short-term memory (LSTM) based model—trained solely on experimentally verified temperature data—accurately forecasts in-box conditions. Subsequently, a literature-based kinetic model applies well-established parameters to estimate remaining shelf life. By placing a single sensor at the pallet level and applying our box-level digital twin model, we achieved a temperature prediction error below ±0.3 °C (2σ), which translated into a shelf-life estimation error of under ±1.2 days for highly perishable fruits such as strawberries and lychees. Simulations also reveal the integrated DT–AI system reduces food loss by 8.6 %, 12.1 %, 13.6 %, and 15.5 % for strawberries, lychees, oranges, and apples, respectively, surpassing simpler ambient-based methods in both accuracy and food safety—particularly for highly perishable produce. Although hierarchical scaling of DTs (box, pallet, container) indicates increasing deviations at larger units, this trade-off between model precision and resource efficiency renders the solution practical across diverse cold-supply scenarios. Future work may incorporate end-point quality assessments and advanced management modules to further enhance reliability, reduce waste, and foster sustainability in global food logistics.
期刊介绍:
The journal publishes original research and review papers on any subject at the interface between food and engineering, particularly those of relevance to industry, including:
Engineering properties of foods, food physics and physical chemistry; processing, measurement, control, packaging, storage and distribution; engineering aspects of the design and production of novel foods and of food service and catering; design and operation of food processes, plant and equipment; economics of food engineering, including the economics of alternative processes.
Accounts of food engineering achievements are of particular value.