A plate geodynamic game changer: Effects of the 66 Ma Chicxulub asteroid collision

IF 8.5 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Amit Segev , Nadav Wetzler , Craig O’Neill , Gideon Rosenbaum
{"title":"A plate geodynamic game changer: Effects of the 66 Ma Chicxulub asteroid collision","authors":"Amit Segev ,&nbsp;Nadav Wetzler ,&nbsp;Craig O’Neill ,&nbsp;Gideon Rosenbaum","doi":"10.1016/j.gsf.2025.102032","DOIUrl":null,"url":null,"abstract":"<div><div>At the end of the Cretaceous period, 66 million years ago, the 7 − 19 km diameter Chicxulub asteroid hit the Yucatan Peninsula in Mexico, triggering global catastrophic environmental changes and mass extinction. The contributions of this event towards changes in plate and plume geodynamics are not fully understood. Here we present a range of geological observations indicating that the impact marked a tectonic turning point in the behavior of mantle plume and plate motion in the Caribbean region and worldwide. At a regional scale, the impact coincides with the termination of seafloor spreading in the Caribbean Ridge. Shortly after the Cretaceous–Paleogene transition, magmatism associated with the Caribbean Large Igneous Province waned, and intensive Paleogene volcanism was initiated. These events happened synchronously with anomalously high mid-ocean ridge magmatism worldwide and an abrupt change in the relative motion of the South American and North American tectonic plates. The evidence for such abrupt changes in plate kinematics and plume behavior raises the possibility that the Chicxulub impact triggered a chain of effects that modified melt reservoirs, subducting plates, mantle flows, and lithospheric deformation. To explain how an asteroid impact could modify tectonic behavior, we discuss two end-member mechanisms: quasi-static and dynamic triggering mechanisms. We designed a numerical model to investigate the strain field and the relative plate motion before and after the impact. The model predicts an enhanced deformation associated with the impact, which surficially tapers off ∼ 500 km from the crater. The impact modifies the subjacent mantle flow field, contributing to long-term mantle-driven dynamic changes. Additionally, deformation associated with seismic effects may have contributed to far-field effects and global changes. We conclude that large asteroid impacts, such as the Chicxulub collision, could trigger cascading effects sufficient to disrupt and significantly modify plate geodynamics.</div></div>","PeriodicalId":12711,"journal":{"name":"Geoscience frontiers","volume":"16 3","pages":"Article 102032"},"PeriodicalIF":8.5000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoscience frontiers","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674987125000325","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

At the end of the Cretaceous period, 66 million years ago, the 7 − 19 km diameter Chicxulub asteroid hit the Yucatan Peninsula in Mexico, triggering global catastrophic environmental changes and mass extinction. The contributions of this event towards changes in plate and plume geodynamics are not fully understood. Here we present a range of geological observations indicating that the impact marked a tectonic turning point in the behavior of mantle plume and plate motion in the Caribbean region and worldwide. At a regional scale, the impact coincides with the termination of seafloor spreading in the Caribbean Ridge. Shortly after the Cretaceous–Paleogene transition, magmatism associated with the Caribbean Large Igneous Province waned, and intensive Paleogene volcanism was initiated. These events happened synchronously with anomalously high mid-ocean ridge magmatism worldwide and an abrupt change in the relative motion of the South American and North American tectonic plates. The evidence for such abrupt changes in plate kinematics and plume behavior raises the possibility that the Chicxulub impact triggered a chain of effects that modified melt reservoirs, subducting plates, mantle flows, and lithospheric deformation. To explain how an asteroid impact could modify tectonic behavior, we discuss two end-member mechanisms: quasi-static and dynamic triggering mechanisms. We designed a numerical model to investigate the strain field and the relative plate motion before and after the impact. The model predicts an enhanced deformation associated with the impact, which surficially tapers off ∼ 500 km from the crater. The impact modifies the subjacent mantle flow field, contributing to long-term mantle-driven dynamic changes. Additionally, deformation associated with seismic effects may have contributed to far-field effects and global changes. We conclude that large asteroid impacts, such as the Chicxulub collision, could trigger cascading effects sufficient to disrupt and significantly modify plate geodynamics.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Geoscience frontiers
Geoscience frontiers Earth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
17.80
自引率
3.40%
发文量
147
审稿时长
35 days
期刊介绍: Geoscience Frontiers (GSF) is the Journal of China University of Geosciences (Beijing) and Peking University. It publishes peer-reviewed research articles and reviews in interdisciplinary fields of Earth and Planetary Sciences. GSF covers various research areas including petrology and geochemistry, lithospheric architecture and mantle dynamics, global tectonics, economic geology and fuel exploration, geophysics, stratigraphy and paleontology, environmental and engineering geology, astrogeology, and the nexus of resources-energy-emissions-climate under Sustainable Development Goals. The journal aims to bridge innovative, provocative, and challenging concepts and models in these fields, providing insights on correlations and evolution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信