Yajing Wang , Yongfu Li , Yan Dong , Chunyan Yu , Chengwei Liu , Chang Li , Yi Sun , Yuehu Pei
{"title":"Discovery of fernane-type triterpenoids from Diaporthe discoidispora using genome mining and HSQC-based SMART technology","authors":"Yajing Wang , Yongfu Li , Yan Dong , Chunyan Yu , Chengwei Liu , Chang Li , Yi Sun , Yuehu Pei","doi":"10.1016/S1875-5364(25)60837-5","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we employed a combination of genome mining and heteronuclear single quantum coherence (HSQC)-based small molecule accurate recognition technology (SMART) technology to search for fernane-type triterpenoids. Initially, potential endophytic fungi were identified through genome mining. Subsequently, fine fractions containing various fernane-type triterpenoids were selected using HSQC data collection and SMART prediction. These triterpenoids were then obtained through targeted isolation and identification. Finally, their antifungal activity was evaluated. As a result, three fernane-type triterpenoids, including two novel compounds, along with two new sesquiterpenes and four known compounds were isolated from one potential strain, <em>Diaporthe discoidispora</em>. Their structures were elucidated through analysis of high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) and nuclear magnetic resonance (NMR) spectroscopic data. The absolute configurations were determined using single-crystal X-ray diffraction analysis and electron capture detector (ECD) analysis. Compound <strong>3</strong> exhibited moderate antifungal activity against <em>Candida albicans</em> CMCC 98001 and <em>Aspergillus niger</em>.</div></div>","PeriodicalId":10002,"journal":{"name":"Chinese Journal of Natural Medicines","volume":"23 3","pages":"Pages 368-376"},"PeriodicalIF":4.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Natural Medicines","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1875536425608375","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INTEGRATIVE & COMPLEMENTARY MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we employed a combination of genome mining and heteronuclear single quantum coherence (HSQC)-based small molecule accurate recognition technology (SMART) technology to search for fernane-type triterpenoids. Initially, potential endophytic fungi were identified through genome mining. Subsequently, fine fractions containing various fernane-type triterpenoids were selected using HSQC data collection and SMART prediction. These triterpenoids were then obtained through targeted isolation and identification. Finally, their antifungal activity was evaluated. As a result, three fernane-type triterpenoids, including two novel compounds, along with two new sesquiterpenes and four known compounds were isolated from one potential strain, Diaporthe discoidispora. Their structures were elucidated through analysis of high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) and nuclear magnetic resonance (NMR) spectroscopic data. The absolute configurations were determined using single-crystal X-ray diffraction analysis and electron capture detector (ECD) analysis. Compound 3 exhibited moderate antifungal activity against Candida albicans CMCC 98001 and Aspergillus niger.
期刊介绍:
The Chinese Journal of Natural Medicines (CJNM), founded and sponsored in May 2003 by China Pharmaceutical University and the Chinese Pharmaceutical Association, is devoted to communication among pharmaceutical and medical scientists interested in the advancement of Traditional Chinese Medicines (TCM). CJNM publishes articles relating to a broad spectrum of bioactive natural products, leading compounds and medicines derived from Traditional Chinese Medicines (TCM).
Topics covered by the journal are: Resources of Traditional Chinese Medicines; Interaction and complexity of prescription; Natural Products Chemistry (including structure modification, semi-and total synthesis, bio-transformation); Pharmacology of natural products and prescription (including pharmacokinetics and toxicology); Pharmaceutics and Analytical Methods of natural products.