Zongqi Peng , Yanhui Zhu , Kun Yang , Yi Luo , Xixi Lu , Jiasheng Wang , Yang Zhang , Danni Su , Run Sun , Mingfeng Zhang , Jingcong Ma , Yang Liu , Mengzhu Sun
{"title":"Restoration of secondary forest in the Greater Mekong Subregion struggles to offset primary forest carbon losses","authors":"Zongqi Peng , Yanhui Zhu , Kun Yang , Yi Luo , Xixi Lu , Jiasheng Wang , Yang Zhang , Danni Su , Run Sun , Mingfeng Zhang , Jingcong Ma , Yang Liu , Mengzhu Sun","doi":"10.1016/j.gloplacha.2025.104796","DOIUrl":null,"url":null,"abstract":"<div><div>The Greater Mekong Subregion (GMS) is experiencing significant changes in forest area, prompting an urgent investigation into whether the alterations in carbon stock from forest loss and restoration can meet the region's need for increased carbon sequestration. Therefore, utilizing remote sensing data such as Landsat and machine learning methods, we established distribution maps of primary and secondary forests and forest carbon density maps for the GMS from 2000 to 2020. By analyzing the gradient effect of forest carbon density across four altitude zones, we investigated the altitude asymmetry of the compensatory effect of secondary forests in the GMS, and predicted the carbon potential of the regional forests. The results indicate that, influenced by human activities, forests in the GMS have transitioned from the loss of primary forests in the 2000s to the recovery of secondary forests in the 2010s. While the rates of area change for loss (−2.22 × 10<sup>5</sup> ha yr<sup>−1</sup>) and recovery (1.97 × 10<sup>5</sup> ha yr<sup>−1</sup>) were similar, an altitude asymmetry caused a regional forest carbon imbalance. The low and mid-altitude regions, with higher carbon density and significant forest loss, can only compensate for 31.50 % of the carbon loss in low-altitude (122.28 TgC) and 47.57 % in mid-altitude (76.25 TgC) through secondary forest recovery. In contrast, the high-altitude region, with lower carbon loss (12.93 TgC) and larger recovery area, results in a forest net carbon sink of 10.66 TgC. Over the next decade, if primary forest loss continues at the current pace, existing secondary forest growth will absorb only 50.41 % of carbon emissions. Therefore, collaboration among GMS countries is essential to protect primary forests and promote secondary forest planting in low to mid-altitude areas for sustainable regional forest carbon development.</div></div>","PeriodicalId":55089,"journal":{"name":"Global and Planetary Change","volume":"249 ","pages":"Article 104796"},"PeriodicalIF":4.0000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global and Planetary Change","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921818125001055","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The Greater Mekong Subregion (GMS) is experiencing significant changes in forest area, prompting an urgent investigation into whether the alterations in carbon stock from forest loss and restoration can meet the region's need for increased carbon sequestration. Therefore, utilizing remote sensing data such as Landsat and machine learning methods, we established distribution maps of primary and secondary forests and forest carbon density maps for the GMS from 2000 to 2020. By analyzing the gradient effect of forest carbon density across four altitude zones, we investigated the altitude asymmetry of the compensatory effect of secondary forests in the GMS, and predicted the carbon potential of the regional forests. The results indicate that, influenced by human activities, forests in the GMS have transitioned from the loss of primary forests in the 2000s to the recovery of secondary forests in the 2010s. While the rates of area change for loss (−2.22 × 105 ha yr−1) and recovery (1.97 × 105 ha yr−1) were similar, an altitude asymmetry caused a regional forest carbon imbalance. The low and mid-altitude regions, with higher carbon density and significant forest loss, can only compensate for 31.50 % of the carbon loss in low-altitude (122.28 TgC) and 47.57 % in mid-altitude (76.25 TgC) through secondary forest recovery. In contrast, the high-altitude region, with lower carbon loss (12.93 TgC) and larger recovery area, results in a forest net carbon sink of 10.66 TgC. Over the next decade, if primary forest loss continues at the current pace, existing secondary forest growth will absorb only 50.41 % of carbon emissions. Therefore, collaboration among GMS countries is essential to protect primary forests and promote secondary forest planting in low to mid-altitude areas for sustainable regional forest carbon development.
期刊介绍:
The objective of the journal Global and Planetary Change is to provide a multi-disciplinary overview of the processes taking place in the Earth System and involved in planetary change over time. The journal focuses on records of the past and current state of the earth system, and future scenarios , and their link to global environmental change. Regional or process-oriented studies are welcome if they discuss global implications. Topics include, but are not limited to, changes in the dynamics and composition of the atmosphere, oceans and cryosphere, as well as climate change, sea level variation, observations/modelling of Earth processes from deep to (near-)surface and their coupling, global ecology, biogeography and the resilience/thresholds in ecosystems.
Key criteria for the consideration of manuscripts are (a) the relevance for the global scientific community and/or (b) the wider implications for global scale problems, preferably combined with (c) having a significance beyond a single discipline. A clear focus on key processes associated with planetary scale change is strongly encouraged.
Manuscripts can be submitted as either research contributions or as a review article. Every effort should be made towards the presentation of research outcomes in an understandable way for a broad readership.