Direct Numerical Simulation of collision events in flotation under the influence of gravity

IF 3.6 2区 工程技术 Q1 MECHANICS
Benedikt Tiedemann , Jochen Fröhlich
{"title":"Direct Numerical Simulation of collision events in flotation under the influence of gravity","authors":"Benedikt Tiedemann ,&nbsp;Jochen Fröhlich","doi":"10.1016/j.ijmultiphaseflow.2025.105204","DOIUrl":null,"url":null,"abstract":"<div><div>Collisions between particles and bubbles are decisive for the performance of flotation processes. In this work Direct Numerical Simulations of a prototypical gravitation-driven flotation process are presented with bubbles fully resolved and modelled as rigid spheres while the solid-phase is represented as point-particles. Key bubble and particle parameters correspond to realistic setups and are varied to study their effect on the collision rate. The study addresses the main influencing parameters, such as bubble diameter, gas hold-up, particle diameter, and particle density. Locally around the bubble significant differences of the collision behaviour exist. Most collisions occur on the upper bubble half, but some also on the lower bubble half. This is caused by a high particle-bubble relative velocity towards the bubble from the upper bubble half and an accumulation of particles at these locations as they deviate around the bubble. The paper provides reference data for flotation modelling.</div></div>","PeriodicalId":339,"journal":{"name":"International Journal of Multiphase Flow","volume":"188 ","pages":"Article 105204"},"PeriodicalIF":3.6000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Multiphase Flow","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301932225000825","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Collisions between particles and bubbles are decisive for the performance of flotation processes. In this work Direct Numerical Simulations of a prototypical gravitation-driven flotation process are presented with bubbles fully resolved and modelled as rigid spheres while the solid-phase is represented as point-particles. Key bubble and particle parameters correspond to realistic setups and are varied to study their effect on the collision rate. The study addresses the main influencing parameters, such as bubble diameter, gas hold-up, particle diameter, and particle density. Locally around the bubble significant differences of the collision behaviour exist. Most collisions occur on the upper bubble half, but some also on the lower bubble half. This is caused by a high particle-bubble relative velocity towards the bubble from the upper bubble half and an accumulation of particles at these locations as they deviate around the bubble. The paper provides reference data for flotation modelling.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.30
自引率
10.50%
发文量
244
审稿时长
4 months
期刊介绍: The International Journal of Multiphase Flow publishes analytical, numerical and experimental articles of lasting interest. The scope of the journal includes all aspects of mass, momentum and energy exchange phenomena among different phases such as occur in disperse flows, gas–liquid and liquid–liquid flows, flows in porous media, boiling, granular flows and others. The journal publishes full papers, brief communications and conference announcements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信