Advanced surface engineering of TZO nanostructures via irradiation technique for enhanced nitric oxide (NO) gas sensitivity

IF 7.5 Q1 CHEMISTRY, PHYSICAL
Gani Yergaliuly , Abylay Tangirbergen , Almagul Mentbayeva , Nurlan Amangeldi , Marat Kaikanov , Selim Acar , Zhumabay Bakenov , Baktiyar Soltabayev
{"title":"Advanced surface engineering of TZO nanostructures via irradiation technique for enhanced nitric oxide (NO) gas sensitivity","authors":"Gani Yergaliuly ,&nbsp;Abylay Tangirbergen ,&nbsp;Almagul Mentbayeva ,&nbsp;Nurlan Amangeldi ,&nbsp;Marat Kaikanov ,&nbsp;Selim Acar ,&nbsp;Zhumabay Bakenov ,&nbsp;Baktiyar Soltabayev","doi":"10.1016/j.apsadv.2025.100736","DOIUrl":null,"url":null,"abstract":"<div><div>This manuscript investigates the enhancement of gas sensing properties of titanium-doped zinc oxide (TZO) nanostructures using intense pulsed ion beam irradiation (IPIB). TZO nanostructures synthesized using the sequential ion-layer adsorption and reaction (SILAR) method were subjected to two different treatments: thermal annealing at 500 °C under nitrogen atmosphere and IPIB. The study investigates the morphological, structural, optical, electrical, and gas-sensing properties of TZO with a focus on the sensitivity and selectivity to nitrogen monoxide (NO) and other gases. The results show that both annealed (<em>a</em>TZO) and irradiated (<em>i</em>TZO) nanofilms exhibit enhanced root-mean-square (RMS) roughness, resulting in improved gas sensing performance. IPIB irradiation induced significant lattice distortions and defects, which played a critical role in the dramatic performance improvement of the <em>i</em>TZO sensors. In particular, <em>i</em>TZO demonstrated a remarkable 1300 % improvement in response to 100 ppm NO at 200 °C. Furthermore, Density Functional Theory (DFT) results revealed that NO gas exhibited a moderate adsorption energy on defective TZO material compared to pristine TZO. This research demonstrates the effectiveness of IPIB irradiation in improving TZO-based gas sensors, suggesting potential for environmental monitoring and industrial applications. Future studies may explore the scalability of this technique and its application to other metal oxide semiconductors to develop advanced gas sensors.</div></div>","PeriodicalId":34303,"journal":{"name":"Applied Surface Science Advances","volume":"27 ","pages":"Article 100736"},"PeriodicalIF":7.5000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666523925000443","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This manuscript investigates the enhancement of gas sensing properties of titanium-doped zinc oxide (TZO) nanostructures using intense pulsed ion beam irradiation (IPIB). TZO nanostructures synthesized using the sequential ion-layer adsorption and reaction (SILAR) method were subjected to two different treatments: thermal annealing at 500 °C under nitrogen atmosphere and IPIB. The study investigates the morphological, structural, optical, electrical, and gas-sensing properties of TZO with a focus on the sensitivity and selectivity to nitrogen monoxide (NO) and other gases. The results show that both annealed (aTZO) and irradiated (iTZO) nanofilms exhibit enhanced root-mean-square (RMS) roughness, resulting in improved gas sensing performance. IPIB irradiation induced significant lattice distortions and defects, which played a critical role in the dramatic performance improvement of the iTZO sensors. In particular, iTZO demonstrated a remarkable 1300 % improvement in response to 100 ppm NO at 200 °C. Furthermore, Density Functional Theory (DFT) results revealed that NO gas exhibited a moderate adsorption energy on defective TZO material compared to pristine TZO. This research demonstrates the effectiveness of IPIB irradiation in improving TZO-based gas sensors, suggesting potential for environmental monitoring and industrial applications. Future studies may explore the scalability of this technique and its application to other metal oxide semiconductors to develop advanced gas sensors.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.10
自引率
1.60%
发文量
128
审稿时长
66 days
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信