Deep attention dynamic representation learning networks for recommender system review modeling

IF 3.5 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Shivangi Gheewala , Shuxiang Xu , Soonja Yeom
{"title":"Deep attention dynamic representation learning networks for recommender system review modeling","authors":"Shivangi Gheewala ,&nbsp;Shuxiang Xu ,&nbsp;Soonja Yeom","doi":"10.1016/j.bdr.2025.100521","DOIUrl":null,"url":null,"abstract":"<div><div>Despite considerable research of utilizing deep learning technology and textual reviews in recommender systems, improving system performance is a contentious matter. This is primarily due to issues faced in learning user-item representations. One issue is the limited ability of networks to model dynamic user-item representations from reviews. Particularly, in sequence-to-sequence learning models, there appears a substantial likelihood of losing semantic knowledge of previous review sequences, as overridden by the next. Another issue lies in effectively integrating global-level and topical-level representations to extract informative content and enhance user-item representations. Existing methods struggle to maintain contextual consistency during this integration process, resulting in suboptimal representation learning, especially attempting to capture finer details. To address these issues, we propose a novel recommendation model called Deep Attention Dynamic Representation Learning (DADRL). Specifically, we employ Latent Dirichlet Allocation and dynamic modulator-based Long Short-Term Memory to extract topical and dynamic global representations. Then, we introduce an attentional fusion methodology to integrate these representations in a contextually consistent manner and construct informative attentional user-item representations. We use these representations into the factorization machines layer to predict the final scores. Experimental results on Amazon categories, Yelp, and LibraryThing show that our model exhibits superior performance compared to several state-of-the-arts. We further examine the DADRL architecture under various conditions to provide insights on the model's employed components.</div></div>","PeriodicalId":56017,"journal":{"name":"Big Data Research","volume":"40 ","pages":"Article 100521"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data Research","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214579625000164","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Despite considerable research of utilizing deep learning technology and textual reviews in recommender systems, improving system performance is a contentious matter. This is primarily due to issues faced in learning user-item representations. One issue is the limited ability of networks to model dynamic user-item representations from reviews. Particularly, in sequence-to-sequence learning models, there appears a substantial likelihood of losing semantic knowledge of previous review sequences, as overridden by the next. Another issue lies in effectively integrating global-level and topical-level representations to extract informative content and enhance user-item representations. Existing methods struggle to maintain contextual consistency during this integration process, resulting in suboptimal representation learning, especially attempting to capture finer details. To address these issues, we propose a novel recommendation model called Deep Attention Dynamic Representation Learning (DADRL). Specifically, we employ Latent Dirichlet Allocation and dynamic modulator-based Long Short-Term Memory to extract topical and dynamic global representations. Then, we introduce an attentional fusion methodology to integrate these representations in a contextually consistent manner and construct informative attentional user-item representations. We use these representations into the factorization machines layer to predict the final scores. Experimental results on Amazon categories, Yelp, and LibraryThing show that our model exhibits superior performance compared to several state-of-the-arts. We further examine the DADRL architecture under various conditions to provide insights on the model's employed components.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Big Data Research
Big Data Research Computer Science-Computer Science Applications
CiteScore
8.40
自引率
3.00%
发文量
0
期刊介绍: The journal aims to promote and communicate advances in big data research by providing a fast and high quality forum for researchers, practitioners and policy makers from the very many different communities working on, and with, this topic. The journal will accept papers on foundational aspects in dealing with big data, as well as papers on specific Platforms and Technologies used to deal with big data. To promote Data Science and interdisciplinary collaboration between fields, and to showcase the benefits of data driven research, papers demonstrating applications of big data in domains as diverse as Geoscience, Social Web, Finance, e-Commerce, Health Care, Environment and Climate, Physics and Astronomy, Chemistry, life sciences and drug discovery, digital libraries and scientific publications, security and government will also be considered. Occasionally the journal may publish whitepapers on policies, standards and best practices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信