Code-Free Deep Learning Glaucoma Detection on Color Fundus Images

IF 3.2 Q1 OPHTHALMOLOGY
Daniel Milad MD , Fares Antaki MDCM , David Mikhail MD (C), MSc (C) , Andrew Farah MDCM (C) , Jonathan El-Khoury MD , Samir Touma MD , Georges M. Durr MD , Taylor Nayman MD , Clément Playout PhD (C) , Pearse A. Keane MD, FRCOphth , Renaud Duval MD
{"title":"Code-Free Deep Learning Glaucoma Detection on Color Fundus Images","authors":"Daniel Milad MD ,&nbsp;Fares Antaki MDCM ,&nbsp;David Mikhail MD (C), MSc (C) ,&nbsp;Andrew Farah MDCM (C) ,&nbsp;Jonathan El-Khoury MD ,&nbsp;Samir Touma MD ,&nbsp;Georges M. Durr MD ,&nbsp;Taylor Nayman MD ,&nbsp;Clément Playout PhD (C) ,&nbsp;Pearse A. Keane MD, FRCOphth ,&nbsp;Renaud Duval MD","doi":"10.1016/j.xops.2025.100721","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>Code-free deep learning (CFDL) allows clinicians with no coding experience to build their own artificial intelligence models. This study assesses the performance of CFDL in glaucoma detection from fundus images in comparison to expert-designed models.</div></div><div><h3>Design</h3><div>Deep learning model development, testing, and validation.</div></div><div><h3>Subjects</h3><div>A total of 101 442 labeled fundus images from the Rotterdam EyePACS Artificial Intelligence for Robust Glaucoma Screening (AIROGS) dataset were included.</div></div><div><h3>Methods</h3><div>Ophthalmology trainees without coding experience designed a CFDL binary model using the Rotterdam EyePACS AIROGS dataset of fundus images (101 442 labeled images) to differentiate glaucoma from normal optic nerves. We compared our results with bespoke models from the literature. We then proceeded to externally validate our model using 2 datasets, the Retinal Fundus Glaucoma Challenge (REFUGE) and the Glaucoma grading from Multi-Modality imAges (GAMMA) at 0.1, 0.3, and 0.5 confidence thresholds.</div></div><div><h3>Main Outcome Measures</h3><div>Area under the precision-recall curve (AuPRC), sensitivity at 95% specificity (SE@95SP), accuracy, area under the receiver operating curve (AUC), and positive predictive value (PPV).</div></div><div><h3>Results</h3><div>The CFDL model showed high performance metrics that were comparable to the bespoke deep learning models. Our single-label classification model had an AuPRC of 0.988, an SE@95SP of 95%, and an accuracy of 91% (compared with 85% SE@95SP for the top bespoke models). Using the REFUGE dataset for external validation, our model had an SE@95SP, AUC, PPV, and accuracy of 83%, 0.960%, 73% to 94%, and 95% to 98%, respectively, at the 0.1, 0.3, and 0.5 confidence threshold cutoffs. Using the GAMMA dataset for external validation at the same confidence threshold cutoffs, our model had an SE@95SP, AUC, PPV, and accuracy of 98%, 0.994%, 94% to 96%, and 94% to 97%, respectively.</div></div><div><h3>Conclusion</h3><div>The capacity of CFDL models to perform glaucoma screening using fundus images presents a compelling proof of concept, empowering clinicians to explore innovative model designs for broad glaucoma screening in the near future.</div></div><div><h3>Financial Disclosure(s)</h3><div>Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.</div></div>","PeriodicalId":74363,"journal":{"name":"Ophthalmology science","volume":"5 4","pages":"Article 100721"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ophthalmology science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666914525000193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective

Code-free deep learning (CFDL) allows clinicians with no coding experience to build their own artificial intelligence models. This study assesses the performance of CFDL in glaucoma detection from fundus images in comparison to expert-designed models.

Design

Deep learning model development, testing, and validation.

Subjects

A total of 101 442 labeled fundus images from the Rotterdam EyePACS Artificial Intelligence for Robust Glaucoma Screening (AIROGS) dataset were included.

Methods

Ophthalmology trainees without coding experience designed a CFDL binary model using the Rotterdam EyePACS AIROGS dataset of fundus images (101 442 labeled images) to differentiate glaucoma from normal optic nerves. We compared our results with bespoke models from the literature. We then proceeded to externally validate our model using 2 datasets, the Retinal Fundus Glaucoma Challenge (REFUGE) and the Glaucoma grading from Multi-Modality imAges (GAMMA) at 0.1, 0.3, and 0.5 confidence thresholds.

Main Outcome Measures

Area under the precision-recall curve (AuPRC), sensitivity at 95% specificity (SE@95SP), accuracy, area under the receiver operating curve (AUC), and positive predictive value (PPV).

Results

The CFDL model showed high performance metrics that were comparable to the bespoke deep learning models. Our single-label classification model had an AuPRC of 0.988, an SE@95SP of 95%, and an accuracy of 91% (compared with 85% SE@95SP for the top bespoke models). Using the REFUGE dataset for external validation, our model had an SE@95SP, AUC, PPV, and accuracy of 83%, 0.960%, 73% to 94%, and 95% to 98%, respectively, at the 0.1, 0.3, and 0.5 confidence threshold cutoffs. Using the GAMMA dataset for external validation at the same confidence threshold cutoffs, our model had an SE@95SP, AUC, PPV, and accuracy of 98%, 0.994%, 94% to 96%, and 94% to 97%, respectively.

Conclusion

The capacity of CFDL models to perform glaucoma screening using fundus images presents a compelling proof of concept, empowering clinicians to explore innovative model designs for broad glaucoma screening in the near future.

Financial Disclosure(s)

Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
彩色眼底图像的无代码深度学习青光眼检测
无代码深度学习(CFDL)允许没有编码经验的临床医生构建自己的人工智能模型。本研究评估了CFDL从眼底图像检测青光眼的性能,并与专家设计的模型进行了比较。深度学习模型的开发、测试和验证。受试者共纳入来自鹿特丹EyePACS人工智能稳健青光眼筛查(AIROGS)数据集的101 442张标记眼底图像。方法利用Rotterdam EyePACS AIROGS眼底图像数据集(101 442张标记图像)设计CFDL二值模型,用于区分青光眼与正常视神经。我们将我们的结果与文献中的定制模型进行了比较。然后,我们使用2个数据集,即视网膜眼底青光眼挑战(REFUGE)和多模态图像青光眼分级(GAMMA),在0.1、0.3和0.5置信阈值下对我们的模型进行外部验证。主要结果测量:精确召回曲线下面积(AuPRC)、95%特异性敏感性(SE@95SP)、准确度、受试者工作曲线下面积(AUC)和阳性预测值(PPV)。CFDL模型显示出与定制深度学习模型相当的高性能指标。我们的单标签分类模型AuPRC为0.988,SE@95SP为95%,准确率为91%(相比之下,顶级定制模型的准确率为85% SE@95SP)。使用REFUGE数据集进行外部验证,我们的模型在0.1、0.3和0.5置信阈值下的SE@95SP、AUC、PPV和准确率分别为83%、0.960%、73%至94%和95%至98%。使用GAMMA数据集在相同的置信阈值截断点进行外部验证,我们的模型的SE@95SP、AUC、PPV和准确率分别为98%、0.994%、94%至96%和94%至97%。结论CFDL模型使用眼底图像进行青光眼筛查的能力提供了一个令人信服的概念证明,使临床医生能够在不久的将来探索用于广泛青光眼筛查的创新模型设计。财务披露专有或商业披露可在本文末尾的脚注和披露中找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ophthalmology science
Ophthalmology science Ophthalmology
CiteScore
3.40
自引率
0.00%
发文量
0
审稿时长
89 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信