{"title":"Some spectral conditions for star-factors in bipartite graphs","authors":"Sizhong Zhou","doi":"10.1016/j.dam.2025.03.014","DOIUrl":null,"url":null,"abstract":"<div><div>A spanning subgraph <span><math><mi>F</mi></math></span> of <span><math><mi>G</mi></math></span> is called an <span><math><mi>F</mi></math></span>-factor if every component of <span><math><mi>F</mi></math></span> is isomorphic to some member of <span><math><mi>F</mi></math></span>, where <span><math><mi>F</mi></math></span> is a set of connected graphs. We denote by <span><math><mrow><mi>A</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> the adjacency matrix of <span><math><mi>G</mi></math></span>, and by <span><math><mrow><mi>D</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> the distance matrix of <span><math><mi>G</mi></math></span>. The largest eigenvalue of <span><math><mrow><mi>A</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, denoted by <span><math><mrow><mi>ρ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, is called the adjacency spectral radius of <span><math><mi>G</mi></math></span>. The largest eigenvalue of <span><math><mrow><mi>D</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, denoted by <span><math><mrow><mi>μ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, is called the distance spectral radius of <span><math><mi>G</mi></math></span>. In this paper, we aim to provide two spectral conditions to ensure the existence of star-factors with given properties. Let <span><math><mi>G</mi></math></span> be a <span><math><mi>k</mi></math></span>-edge-connected bipartite graph with bipartition <span><math><mrow><mo>(</mo><mi>A</mi><mo>,</mo><mi>B</mi><mo>)</mo></mrow></math></span> and <span><math><mrow><mrow><mo>|</mo><mi>B</mi><mo>|</mo></mrow><mo>=</mo><mi>k</mi><mrow><mo>|</mo><mi>A</mi><mo>|</mo></mrow><mo>=</mo><mi>k</mi><mi>n</mi></mrow></math></span>, where <span><math><mi>n</mi></math></span> is a sufficiently large positive integer. Then the following two results are true.</div><div>(i) If <span><math><mrow><mi>ρ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≥</mo><mi>ρ</mi><mrow><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn><mo>,</mo><mi>k</mi><mi>n</mi><mo>−</mo><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>∇</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>)</mo></mrow></mrow></math></span>, then <span><math><mi>G</mi></math></span> contains a star-factor <span><math><mi>F</mi></math></span> with <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>F</mi></mrow></msub><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>=</mo><mi>k</mi></mrow></math></span> for any <span><math><mrow><mi>u</mi><mo>∈</mo><mi>A</mi></mrow></math></span> and <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>F</mi></mrow></msub><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>=</mo><mn>1</mn></mrow></math></span> for any <span><math><mrow><mi>v</mi><mo>∈</mo><mi>B</mi></mrow></math></span>, unless <span><math><mrow><mi>G</mi><mo>=</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn><mo>,</mo><mi>k</mi><mi>n</mi><mo>−</mo><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>∇</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub></mrow></math></span>.</div><div>(ii) If <span><math><mrow><mi>μ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mi>μ</mi><mrow><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn><mo>,</mo><mi>k</mi><mi>n</mi><mo>−</mo><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>∇</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>)</mo></mrow></mrow></math></span>, then <span><math><mi>G</mi></math></span> contains a star-factor <span><math><mi>F</mi></math></span> with <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>F</mi></mrow></msub><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>=</mo><mi>k</mi></mrow></math></span> for any <span><math><mrow><mi>u</mi><mo>∈</mo><mi>A</mi></mrow></math></span> and <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>F</mi></mrow></msub><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>=</mo><mn>1</mn></mrow></math></span> for any <span><math><mrow><mi>v</mi><mo>∈</mo><mi>B</mi></mrow></math></span>, unless <span><math><mrow><mi>G</mi><mo>=</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn><mo>,</mo><mi>k</mi><mi>n</mi><mo>−</mo><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>∇</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub></mrow></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"369 ","pages":"Pages 124-130"},"PeriodicalIF":1.0000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25001398","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
A spanning subgraph of is called an -factor if every component of is isomorphic to some member of , where is a set of connected graphs. We denote by the adjacency matrix of , and by the distance matrix of . The largest eigenvalue of , denoted by , is called the adjacency spectral radius of . The largest eigenvalue of , denoted by , is called the distance spectral radius of . In this paper, we aim to provide two spectral conditions to ensure the existence of star-factors with given properties. Let be a -edge-connected bipartite graph with bipartition and , where is a sufficiently large positive integer. Then the following two results are true.
(i) If , then contains a star-factor with for any and for any , unless .
(ii) If , then contains a star-factor with for any and for any , unless .
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.