Anodic dissolution and passivation mechanisms of 07Cr16Ni6 in K3Cit solution and its electrochemical machining for microstructure

IF 7.4 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jingtao Wang , Jiabao Zhang , Zhaoyang Zhang , Hao Zhu , Kun Xu , Yang Liu , Wei Xue , Tianlong Li
{"title":"Anodic dissolution and passivation mechanisms of 07Cr16Ni6 in K3Cit solution and its electrochemical machining for microstructure","authors":"Jingtao Wang ,&nbsp;Jiabao Zhang ,&nbsp;Zhaoyang Zhang ,&nbsp;Hao Zhu ,&nbsp;Kun Xu ,&nbsp;Yang Liu ,&nbsp;Wei Xue ,&nbsp;Tianlong Li","doi":"10.1016/j.corsci.2025.112877","DOIUrl":null,"url":null,"abstract":"<div><div>The complexation mechanism, passivation-related behaviors and interface structures of 07Cr16Ni6 in K<sub>3</sub>Cit solution were clarified. Cit<sup>3–</sup> contend against OH<sup>−</sup> for cationic, leading to the formation of tetra- or hexa-dentate complexes. The anodic dissolution behaviors revealed passive and transpassive behaviors. Passivation film presented a more capacitive, thicker, stable inner film and a weaker, thinner outer film, and the external and internal films were around 3 nm and 24 nm, respectively. Current efficiency increases gently, then rises steeply, finally stabilizes. The lath-type martensite dispersed on machined surface improved substantially as the current density increased. Finally, the anodic dissolution characteristic models and a high quality round hole were fabricated. The experimental results have proved the feasibility to manufacture high-quality metallic bipolar plates through electrochemical machining on 07Cr16Ni6 alloy in K<sub>3</sub>Cit solution.</div></div>","PeriodicalId":290,"journal":{"name":"Corrosion Science","volume":"250 ","pages":"Article 112877"},"PeriodicalIF":7.4000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010938X25002045","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The complexation mechanism, passivation-related behaviors and interface structures of 07Cr16Ni6 in K3Cit solution were clarified. Cit3– contend against OH for cationic, leading to the formation of tetra- or hexa-dentate complexes. The anodic dissolution behaviors revealed passive and transpassive behaviors. Passivation film presented a more capacitive, thicker, stable inner film and a weaker, thinner outer film, and the external and internal films were around 3 nm and 24 nm, respectively. Current efficiency increases gently, then rises steeply, finally stabilizes. The lath-type martensite dispersed on machined surface improved substantially as the current density increased. Finally, the anodic dissolution characteristic models and a high quality round hole were fabricated. The experimental results have proved the feasibility to manufacture high-quality metallic bipolar plates through electrochemical machining on 07Cr16Ni6 alloy in K3Cit solution.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Corrosion Science
Corrosion Science 工程技术-材料科学:综合
CiteScore
13.60
自引率
18.10%
发文量
763
审稿时长
46 days
期刊介绍: Corrosion occurrence and its practical control encompass a vast array of scientific knowledge. Corrosion Science endeavors to serve as the conduit for the exchange of ideas, developments, and research across all facets of this field, encompassing both metallic and non-metallic corrosion. The scope of this international journal is broad and inclusive. Published papers span from highly theoretical inquiries to essentially practical applications, covering diverse areas such as high-temperature oxidation, passivity, anodic oxidation, biochemical corrosion, stress corrosion cracking, and corrosion control mechanisms and methodologies. This journal publishes original papers and critical reviews across the spectrum of pure and applied corrosion, material degradation, and surface science and engineering. It serves as a crucial link connecting metallurgists, materials scientists, and researchers investigating corrosion and degradation phenomena. Join us in advancing knowledge and understanding in the vital field of corrosion science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信