MK-212 precipitates seizure-induced death in amygdala-kindled mice via a non-5-HT2C receptor-mediated mechanism

IF 2.3 3区 医学 Q2 BEHAVIORAL SCIENCES
Katelyn G. Joyal , Nicole A. Boodhoo , Gordon F. Buchanan
{"title":"MK-212 precipitates seizure-induced death in amygdala-kindled mice via a non-5-HT2C receptor-mediated mechanism","authors":"Katelyn G. Joyal ,&nbsp;Nicole A. Boodhoo ,&nbsp;Gordon F. Buchanan","doi":"10.1016/j.yebeh.2025.110385","DOIUrl":null,"url":null,"abstract":"<div><div>Epilepsy is a common neurological condition that affects over 65 million people worldwide. Despite an increasing number of anti-seizure medications being made available, many patients do not find seizure freedom with medication. The leading cause of death in this refractory population is sudden unexpected death in epilepsy (SUDEP). Both human and animal research has implicated serotonin (5-HT) in modulating seizure proclivity, severity, and mortality. More recently, evidence has pointed to the 5-HT<sub>2C</sub> receptor as a salient target for investigating the mechanisms of seizure facilitation and mortality. Various seizures models have been used previously to assess the role of the 5-HT<sub>2C</sub> receptor in seizure expression and morphology. However, limbic kindling models have been underutilized in this endeavor. We used the selective 5-HT<sub>2C</sub> receptor agonist MK-212 to examine the effect of 5-HT<sub>2C</sub> receptor activation in amygdala kindled mice. C57BL/6J mice were instrumented with an EEG/EMG headmount and a bipolar electrode in the basolateral amygdala (BLA). The animals then received vehicle or MK-212 (10, 30 mg/kg) prior to seizure induction. 12.5% of WT animals that received 10 mg/kg MK-212 experienced seizure-induced respiratory arrest and died following seizure induction. When the dose was raised to 30 mg/kg, 100% of the animals succumbed following a seizure. These fatal seizures persisted when the same doses of MK-212 were administered to mice lacking the 5-HT<sub>2C</sub> receptor. This suggests that a non-5-HT<sub>2C</sub> mediated effect of MK-212 facilitates seizure-induced death in a dose-dependent manner. While amygdala kindling is not a model that is traditionally associated with seizure-induced death, these results suggest that there are circuits that, when recruited, will cause death following kindled seizures. Uncovering these circuits will both deepen our understanding of the amygdala kindling model and provide a new technique for researchers to test novel therapeutic interventions to lessen SUDEP risk.</div></div>","PeriodicalId":11847,"journal":{"name":"Epilepsy & Behavior","volume":"167 ","pages":"Article 110385"},"PeriodicalIF":2.3000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epilepsy & Behavior","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1525505025001246","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Epilepsy is a common neurological condition that affects over 65 million people worldwide. Despite an increasing number of anti-seizure medications being made available, many patients do not find seizure freedom with medication. The leading cause of death in this refractory population is sudden unexpected death in epilepsy (SUDEP). Both human and animal research has implicated serotonin (5-HT) in modulating seizure proclivity, severity, and mortality. More recently, evidence has pointed to the 5-HT2C receptor as a salient target for investigating the mechanisms of seizure facilitation and mortality. Various seizures models have been used previously to assess the role of the 5-HT2C receptor in seizure expression and morphology. However, limbic kindling models have been underutilized in this endeavor. We used the selective 5-HT2C receptor agonist MK-212 to examine the effect of 5-HT2C receptor activation in amygdala kindled mice. C57BL/6J mice were instrumented with an EEG/EMG headmount and a bipolar electrode in the basolateral amygdala (BLA). The animals then received vehicle or MK-212 (10, 30 mg/kg) prior to seizure induction. 12.5% of WT animals that received 10 mg/kg MK-212 experienced seizure-induced respiratory arrest and died following seizure induction. When the dose was raised to 30 mg/kg, 100% of the animals succumbed following a seizure. These fatal seizures persisted when the same doses of MK-212 were administered to mice lacking the 5-HT2C receptor. This suggests that a non-5-HT2C mediated effect of MK-212 facilitates seizure-induced death in a dose-dependent manner. While amygdala kindling is not a model that is traditionally associated with seizure-induced death, these results suggest that there are circuits that, when recruited, will cause death following kindled seizures. Uncovering these circuits will both deepen our understanding of the amygdala kindling model and provide a new technique for researchers to test novel therapeutic interventions to lessen SUDEP risk.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Epilepsy & Behavior
Epilepsy & Behavior 医学-行为科学
CiteScore
5.40
自引率
15.40%
发文量
385
审稿时长
43 days
期刊介绍: Epilepsy & Behavior is the fastest-growing international journal uniquely devoted to the rapid dissemination of the most current information available on the behavioral aspects of seizures and epilepsy. Epilepsy & Behavior presents original peer-reviewed articles based on laboratory and clinical research. Topics are drawn from a variety of fields, including clinical neurology, neurosurgery, neuropsychiatry, neuropsychology, neurophysiology, neuropharmacology, and neuroimaging. From September 2012 Epilepsy & Behavior stopped accepting Case Reports for publication in the journal. From this date authors who submit to Epilepsy & Behavior will be offered a transfer or asked to resubmit their Case Reports to its new sister journal, Epilepsy & Behavior Case Reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信