Yulian Yang , Yonghao Qiu , Shijing Xu , Huichang Gao , Chunhui Wang , Haohui Huang , Zhengyu Yang , Xiaofeng Chen , Fujian Zhao
{"title":"Bioactive vascular buds promote collateral vessel formation by grafting on the artificial vessel walls","authors":"Yulian Yang , Yonghao Qiu , Shijing Xu , Huichang Gao , Chunhui Wang , Haohui Huang , Zhengyu Yang , Xiaofeng Chen , Fujian Zhao","doi":"10.1016/j.bioactmat.2025.03.015","DOIUrl":null,"url":null,"abstract":"<div><div>Vascular injury and some chronic ischemic lesions usually lead to insufficient blood supply to tissues, which will lead to tissue ischemia or even necrosis in severe cases. Current artificial blood vessels lack effective collateral vascularization capabilities to provide adequate blood supply in areas with restricted blood flow. Herein, inspired by the grafting of tree buds to form lateral branches, the vascular buds model was successfully constructed by inoculating HUVECs into bioactive hydrogel microspheres. Under the influence of ions dissolved from bioactive glass and three-dimensional culture environment, the cytoskeleton was remodeled, the cells showed obvious outward migration and budding trend, which significantly enhanced the angiogenesis ability. After grafted vascular buds to the lateral wall of the artificial blood vessel, a large number of collateral vessels are formed, which effectively alleviates the tissue ischemia in the region through which blood vessels pass. This study confirms the impact of bioactive ions on angiogenesis in a three-dimensional environment and offers novel insights for the development of lateral branches in artificial blood vessels.</div></div>","PeriodicalId":8762,"journal":{"name":"Bioactive Materials","volume":"49 ","pages":"Pages 564-575"},"PeriodicalIF":18.0000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioactive Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452199X25001252","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Vascular injury and some chronic ischemic lesions usually lead to insufficient blood supply to tissues, which will lead to tissue ischemia or even necrosis in severe cases. Current artificial blood vessels lack effective collateral vascularization capabilities to provide adequate blood supply in areas with restricted blood flow. Herein, inspired by the grafting of tree buds to form lateral branches, the vascular buds model was successfully constructed by inoculating HUVECs into bioactive hydrogel microspheres. Under the influence of ions dissolved from bioactive glass and three-dimensional culture environment, the cytoskeleton was remodeled, the cells showed obvious outward migration and budding trend, which significantly enhanced the angiogenesis ability. After grafted vascular buds to the lateral wall of the artificial blood vessel, a large number of collateral vessels are formed, which effectively alleviates the tissue ischemia in the region through which blood vessels pass. This study confirms the impact of bioactive ions on angiogenesis in a three-dimensional environment and offers novel insights for the development of lateral branches in artificial blood vessels.
Bioactive MaterialsBiochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
28.00
自引率
6.30%
发文量
436
审稿时长
20 days
期刊介绍:
Bioactive Materials is a peer-reviewed research publication that focuses on advancements in bioactive materials. The journal accepts research papers, reviews, and rapid communications in the field of next-generation biomaterials that interact with cells, tissues, and organs in various living organisms.
The primary goal of Bioactive Materials is to promote the science and engineering of biomaterials that exhibit adaptiveness to the biological environment. These materials are specifically designed to stimulate or direct appropriate cell and tissue responses or regulate interactions with microorganisms.
The journal covers a wide range of bioactive materials, including those that are engineered or designed in terms of their physical form (e.g. particulate, fiber), topology (e.g. porosity, surface roughness), or dimensions (ranging from macro to nano-scales). Contributions are sought from the following categories of bioactive materials:
Bioactive metals and alloys
Bioactive inorganics: ceramics, glasses, and carbon-based materials
Bioactive polymers and gels
Bioactive materials derived from natural sources
Bioactive composites
These materials find applications in human and veterinary medicine, such as implants, tissue engineering scaffolds, cell/drug/gene carriers, as well as imaging and sensing devices.