Juseok Oh , Sungkook Hong , Byungjoo Choi , Youngjib Ham , Hyunsoo Kim
{"title":"Integrating text parsing and object detection for automated monitoring of finishing works in construction projects","authors":"Juseok Oh , Sungkook Hong , Byungjoo Choi , Youngjib Ham , Hyunsoo Kim","doi":"10.1016/j.autcon.2025.106139","DOIUrl":null,"url":null,"abstract":"<div><div>Construction process monitoring traditionally relies on manual inspections and document cross-referencing, leading to inefficiencies in project management. Despite advances enabling computer vision-based monitoring and automated document analysis, integrating these technologies remains challenging, particularly in connecting field data with work documentation. This paper proposes an automated monitoring system integrating computer vision-based field data with text-based work instructions. The system employs YOLOv5 object detection models to analyze construction site images and architectural drawings, while utilizing text parsing techniques to extract information from work instructions. Validation using thirty apartment units demonstrated effectiveness in monitoring finishing works, particularly masonry and tiling applications. Results showed consistent performance in establishing automated connections between work instructions, drawings, and site conditions, reducing manual verification requirements while maintaining high accuracy. The successful implementation in finishing works demonstrates potential scalability for broader construction applications with varying complexity levels.</div></div>","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"174 ","pages":"Article 106139"},"PeriodicalIF":9.6000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation in Construction","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926580525001797","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Construction process monitoring traditionally relies on manual inspections and document cross-referencing, leading to inefficiencies in project management. Despite advances enabling computer vision-based monitoring and automated document analysis, integrating these technologies remains challenging, particularly in connecting field data with work documentation. This paper proposes an automated monitoring system integrating computer vision-based field data with text-based work instructions. The system employs YOLOv5 object detection models to analyze construction site images and architectural drawings, while utilizing text parsing techniques to extract information from work instructions. Validation using thirty apartment units demonstrated effectiveness in monitoring finishing works, particularly masonry and tiling applications. Results showed consistent performance in establishing automated connections between work instructions, drawings, and site conditions, reducing manual verification requirements while maintaining high accuracy. The successful implementation in finishing works demonstrates potential scalability for broader construction applications with varying complexity levels.
期刊介绍:
Automation in Construction is an international journal that focuses on publishing original research papers related to the use of Information Technologies in various aspects of the construction industry. The journal covers topics such as design, engineering, construction technologies, and the maintenance and management of constructed facilities.
The scope of Automation in Construction is extensive and covers all stages of the construction life cycle. This includes initial planning and design, construction of the facility, operation and maintenance, as well as the eventual dismantling and recycling of buildings and engineering structures.