Simulation study on the effect of obstacles upstream of the building exit on evacuation efficiency

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Hongpeng Qiu , Zheng Fang , Eric Wai Ming Lee
{"title":"Simulation study on the effect of obstacles upstream of the building exit on evacuation efficiency","authors":"Hongpeng Qiu ,&nbsp;Zheng Fang ,&nbsp;Eric Wai Ming Lee","doi":"10.1016/j.physa.2025.130547","DOIUrl":null,"url":null,"abstract":"<div><div>Since the argument that placing obstacles upstream of the building exit can improve evacuation efficiency was put forward, how to set up obstacles to improve building evacuation efficiency has become a hot topic. Based on the actual evacuation experimental data, this paper established and verified a discrete cellular automaton model that realised the ‘faster is slower’ effect in the actual evacuation experiment and, on this basis, studied the impact of different obstacle settings on building evacuation efficiency under different emergency levels. Through research, we found that setting up obstacles opposite to the building emergency exit, not close to the building emergency exit, or in a corridor-like form at the building's emergency exit will reduce evacuation efficiency while setting up obstacles close to the building emergency exit can increase evacuation efficiency. In addition, setting up obstacles close to the side with fewer people can improve building evacuation efficiency more than setting up obstacles close to the side with more people, and setting up more obstacles on the side with fewer people can improve evacuation efficiency more than setting up more obstacles on the side with more people. Our research findings have the potential to significantly improve our understanding of the impact of obstacles near exits on building evacuation efficiency and, thereby, save lives in emergencies.</div></div>","PeriodicalId":20152,"journal":{"name":"Physica A: Statistical Mechanics and its Applications","volume":"666 ","pages":"Article 130547"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica A: Statistical Mechanics and its Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378437125001992","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Since the argument that placing obstacles upstream of the building exit can improve evacuation efficiency was put forward, how to set up obstacles to improve building evacuation efficiency has become a hot topic. Based on the actual evacuation experimental data, this paper established and verified a discrete cellular automaton model that realised the ‘faster is slower’ effect in the actual evacuation experiment and, on this basis, studied the impact of different obstacle settings on building evacuation efficiency under different emergency levels. Through research, we found that setting up obstacles opposite to the building emergency exit, not close to the building emergency exit, or in a corridor-like form at the building's emergency exit will reduce evacuation efficiency while setting up obstacles close to the building emergency exit can increase evacuation efficiency. In addition, setting up obstacles close to the side with fewer people can improve building evacuation efficiency more than setting up obstacles close to the side with more people, and setting up more obstacles on the side with fewer people can improve evacuation efficiency more than setting up more obstacles on the side with more people. Our research findings have the potential to significantly improve our understanding of the impact of obstacles near exits on building evacuation efficiency and, thereby, save lives in emergencies.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
9.10%
发文量
852
审稿时长
6.6 months
期刊介绍: Physica A: Statistical Mechanics and its Applications Recognized by the European Physical Society Physica A publishes research in the field of statistical mechanics and its applications. Statistical mechanics sets out to explain the behaviour of macroscopic systems by studying the statistical properties of their microscopic constituents. Applications of the techniques of statistical mechanics are widespread, and include: applications to physical systems such as solids, liquids and gases; applications to chemical and biological systems (colloids, interfaces, complex fluids, polymers and biopolymers, cell physics); and other interdisciplinary applications to for instance biological, economical and sociological systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信