Linjun Lu, Alix Marie d'Avigneau, Yuandong Pan, Zhaojie Sun, Peihang Luo, Ioannis Brilakis
{"title":"Modeling heterogeneous spatiotemporal pavement data for condition prediction and preventive maintenance in digital twin-enabled highway management","authors":"Linjun Lu, Alix Marie d'Avigneau, Yuandong Pan, Zhaojie Sun, Peihang Luo, Ioannis Brilakis","doi":"10.1016/j.autcon.2025.106134","DOIUrl":null,"url":null,"abstract":"<div><div>Pavement preventive maintenance is one of the most fundamental use cases when deploying digital twins (DTs) for highway infrastructure management. To achieve this, it is essential to accurately predict the pavement conditions in future years. This paper developed a Spatial-Temporal Graph Attention network (STGAT) that can effectively capitalize on both spatial and temporal dependencies while addressing inherent heterogeneity in pavement data for more accurate condition predictions. On top of this, a structured assessment procedure was introduced to determine the need for preventive maintenance on road sections based on the STGAT predictions. A case study on the highway network in the United Kingdom was conducted to evaluate the method's performance. The results showed that the proposed method can achieve superior accuracy for pavement condition prediction and subsequent preventive maintenance assessment compared to existing methods, thus signifying its potential to improve the effectiveness of DTs for highway infrastructure management.</div></div>","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"174 ","pages":"Article 106134"},"PeriodicalIF":9.6000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation in Construction","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926580525001748","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Pavement preventive maintenance is one of the most fundamental use cases when deploying digital twins (DTs) for highway infrastructure management. To achieve this, it is essential to accurately predict the pavement conditions in future years. This paper developed a Spatial-Temporal Graph Attention network (STGAT) that can effectively capitalize on both spatial and temporal dependencies while addressing inherent heterogeneity in pavement data for more accurate condition predictions. On top of this, a structured assessment procedure was introduced to determine the need for preventive maintenance on road sections based on the STGAT predictions. A case study on the highway network in the United Kingdom was conducted to evaluate the method's performance. The results showed that the proposed method can achieve superior accuracy for pavement condition prediction and subsequent preventive maintenance assessment compared to existing methods, thus signifying its potential to improve the effectiveness of DTs for highway infrastructure management.
期刊介绍:
Automation in Construction is an international journal that focuses on publishing original research papers related to the use of Information Technologies in various aspects of the construction industry. The journal covers topics such as design, engineering, construction technologies, and the maintenance and management of constructed facilities.
The scope of Automation in Construction is extensive and covers all stages of the construction life cycle. This includes initial planning and design, construction of the facility, operation and maintenance, as well as the eventual dismantling and recycling of buildings and engineering structures.