{"title":"Predictive insights into arsenic remediation: Advancing electro and chemical coagulation through machine learning models","authors":"Merve Dönmez Öztel , Alper Alver , Feryal Akbal , Levent Altaş , Ayşe Kuleyin","doi":"10.1016/j.jwpe.2025.107498","DOIUrl":null,"url":null,"abstract":"<div><div>Arsenic contamination in water sources remains a critical environmental and public health challenge, mainly due to the toxicity of its trivalent (As(III)) and pentavalent (As(V)) forms. This study compares advanced predictive modeling to enhance arsenic remediation, comparing electrocoagulation (EC) and chemical coagulation (CC) processes for their efficiency and cost-effectiveness. Higher As(III) removal rates were achieved using iron and aluminum electrodes in EC (up to 99 % in 5 min using Fe electrodes) compared to CC (up to 90 % using Fe(II) coagulant). The study's results highlight the operational advantages of EC, including a 40 % cost reduction due to lower chemical usage and sludge production. Machine learning models, including Support Vector Machines (SVM), Regression Trees, Random Forest, and Gradient Boosting, were developed to predict removal efficiencies under diverse operational conditions. SVM exhibited the highest predictive accuracy for As(III) removal in EC with Fe electrodes (MSE = 0.340, R<sup>2</sup> = 0.954). At the same time, Regression Trees outperformed other models for As(V) removal in CC with Fe(III) coagulants (MSE = 0.371, R<sup>2</sup> = 0.997). These techniques are highly effective in optimizing arsenic removal processes, allowing for precise regulation of treatment parameters and reducing dependence on trial-and-error methods. The findings highlight electrocoagulation with iron electrodes as a sustainable and cost-effective approach to arsenic remediation, particularly for As(III), while underscoring the transformative role of predictive modeling in water treatment. This study successfully integrates experimental insights with machine learning, driving improvements in the efficiency and adaptability of arsenic removal technologies.</div></div>","PeriodicalId":17528,"journal":{"name":"Journal of water process engineering","volume":"72 ","pages":"Article 107498"},"PeriodicalIF":6.3000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of water process engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214714425005707","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Arsenic contamination in water sources remains a critical environmental and public health challenge, mainly due to the toxicity of its trivalent (As(III)) and pentavalent (As(V)) forms. This study compares advanced predictive modeling to enhance arsenic remediation, comparing electrocoagulation (EC) and chemical coagulation (CC) processes for their efficiency and cost-effectiveness. Higher As(III) removal rates were achieved using iron and aluminum electrodes in EC (up to 99 % in 5 min using Fe electrodes) compared to CC (up to 90 % using Fe(II) coagulant). The study's results highlight the operational advantages of EC, including a 40 % cost reduction due to lower chemical usage and sludge production. Machine learning models, including Support Vector Machines (SVM), Regression Trees, Random Forest, and Gradient Boosting, were developed to predict removal efficiencies under diverse operational conditions. SVM exhibited the highest predictive accuracy for As(III) removal in EC with Fe electrodes (MSE = 0.340, R2 = 0.954). At the same time, Regression Trees outperformed other models for As(V) removal in CC with Fe(III) coagulants (MSE = 0.371, R2 = 0.997). These techniques are highly effective in optimizing arsenic removal processes, allowing for precise regulation of treatment parameters and reducing dependence on trial-and-error methods. The findings highlight electrocoagulation with iron electrodes as a sustainable and cost-effective approach to arsenic remediation, particularly for As(III), while underscoring the transformative role of predictive modeling in water treatment. This study successfully integrates experimental insights with machine learning, driving improvements in the efficiency and adaptability of arsenic removal technologies.
期刊介绍:
The Journal of Water Process Engineering aims to publish refereed, high-quality research papers with significant novelty and impact in all areas of the engineering of water and wastewater processing . Papers on advanced and novel treatment processes and technologies are particularly welcome. The Journal considers papers in areas such as nanotechnology and biotechnology applications in water, novel oxidation and separation processes, membrane processes (except those for desalination) , catalytic processes for the removal of water contaminants, sustainable processes, water reuse and recycling, water use and wastewater minimization, integrated/hybrid technology, process modeling of water treatment and novel treatment processes. Submissions on the subject of adsorbents, including standard measurements of adsorption kinetics and equilibrium will only be considered if there is a genuine case for novelty and contribution, for example highly novel, sustainable adsorbents and their use: papers on activated carbon-type materials derived from natural matter, or surfactant-modified clays and related minerals, would not fulfil this criterion. The Journal particularly welcomes contributions involving environmentally, economically and socially sustainable technology for water treatment, including those which are energy-efficient, with minimal or no chemical consumption, and capable of water recycling and reuse that minimizes the direct disposal of wastewater to the aquatic environment. Papers that describe novel ideas for solving issues related to water quality and availability are also welcome, as are those that show the transfer of techniques from other disciplines. The Journal will consider papers dealing with processes for various water matrices including drinking water (except desalination), domestic, urban and industrial wastewaters, in addition to their residues. It is expected that the journal will be of particular relevance to chemical and process engineers working in the field. The Journal welcomes Full Text papers, Short Communications, State-of-the-Art Reviews and Letters to Editors and Case Studies