{"title":"Structural bioelectrochemistry of direct electron transfer-type multimeric dehydrogenases: Basic principle and rational strategies","authors":"Konatsu Ichikawa, Taiki Adachi, Keisei Sowa","doi":"10.1016/j.bioelechem.2025.108973","DOIUrl":null,"url":null,"abstract":"<div><div>Direct electron transfer (DET)-type bioelectrocatalysis, a coupled enzymatic and electrode reaction without redox mediators, provides insights into enzyme properties that facilitate the construction of efficient biomimetic devices. Because many DET-type multimeric dehydrogenases are membrane-bound proteins, obtaining the overall steric structures of these enzymes using conventional X-ray crystallography has proved difficult for many decades. Novel cryo-electron microscopy (cryo-EM) and single-particle image analysis have recently been developed that enable elucidation of the overall structure of membrane-bound DET-type multimeric dehydrogenases. In particular, “structural bioelectrochemistry,” a fusion of structural biology and bioelectrochemistry, has enabled rapid hypothesis testing via the analysis of three-dimensional (3D) structures using enzyme engineering and electrochemistry. This review outlines critical related studies in the last decade and the epoch-making breakthroughs leading to next-generation applications.</div></div>","PeriodicalId":252,"journal":{"name":"Bioelectrochemistry","volume":"165 ","pages":"Article 108973"},"PeriodicalIF":4.8000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567539425000763","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Direct electron transfer (DET)-type bioelectrocatalysis, a coupled enzymatic and electrode reaction without redox mediators, provides insights into enzyme properties that facilitate the construction of efficient biomimetic devices. Because many DET-type multimeric dehydrogenases are membrane-bound proteins, obtaining the overall steric structures of these enzymes using conventional X-ray crystallography has proved difficult for many decades. Novel cryo-electron microscopy (cryo-EM) and single-particle image analysis have recently been developed that enable elucidation of the overall structure of membrane-bound DET-type multimeric dehydrogenases. In particular, “structural bioelectrochemistry,” a fusion of structural biology and bioelectrochemistry, has enabled rapid hypothesis testing via the analysis of three-dimensional (3D) structures using enzyme engineering and electrochemistry. This review outlines critical related studies in the last decade and the epoch-making breakthroughs leading to next-generation applications.
期刊介绍:
An International Journal Devoted to Electrochemical Aspects of Biology and Biological Aspects of Electrochemistry
Bioelectrochemistry is an international journal devoted to electrochemical principles in biology and biological aspects of electrochemistry. It publishes experimental and theoretical papers dealing with the electrochemical aspects of:
• Electrified interfaces (electric double layers, adsorption, electron transfer, protein electrochemistry, basic principles of biosensors, biosensor interfaces and bio-nanosensor design and construction.
• Electric and magnetic field effects (field-dependent processes, field interactions with molecules, intramolecular field effects, sensory systems for electric and magnetic fields, molecular and cellular mechanisms)
• Bioenergetics and signal transduction (energy conversion, photosynthetic and visual membranes)
• Biomembranes and model membranes (thermodynamics and mechanics, membrane transport, electroporation, fusion and insertion)
• Electrochemical applications in medicine and biotechnology (drug delivery and gene transfer to cells and tissues, iontophoresis, skin electroporation, injury and repair).
• Organization and use of arrays in-vitro and in-vivo, including as part of feedback control.
• Electrochemical interrogation of biofilms as generated by microorganisms and tissue reaction associated with medical implants.