Spectra of the Mycielskian of a signed graph and related products

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Mir Riyaz Ul Rashid , S. Pirzada , Zoran Stanić
{"title":"Spectra of the Mycielskian of a signed graph and related products","authors":"Mir Riyaz Ul Rashid ,&nbsp;S. Pirzada ,&nbsp;Zoran Stanić","doi":"10.1016/j.dam.2025.03.017","DOIUrl":null,"url":null,"abstract":"<div><div>In a search for graphs with arbitrarily large chromatic number, Mycielski has offered a construction that transforms a graph <span><math><mrow><mi>G</mi><mo>=</mo><mrow><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></mrow></math></span> into a new graph <span><math><mrow><mi>μ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, which is called the Mycielskian of <span><math><mi>G</mi></math></span>. Recently, the same concept is transferred to the framework of signed graphs. Accordingly, if <span><math><mrow><mi>V</mi><mo>=</mo><mrow><mo>{</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>}</mo></mrow></mrow></math></span> and <span><math><mrow><mi>E</mi><mo>=</mo><mrow><mo>{</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>e</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>}</mo></mrow></mrow></math></span>, then the vertex set of <span><math><mrow><mi>μ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is the disjoint union of <span><math><mi>V</mi></math></span>, <span><math><mrow><msup><mrow><mi>V</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>=</mo><mrow><mo>{</mo><msubsup><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>′</mo></mrow></msubsup><mo>,</mo><msubsup><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow><mrow><mo>′</mo></mrow></msubsup><mo>,</mo><mo>…</mo><mo>,</mo><msubsup><mrow><mi>v</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mo>}</mo></mrow></mrow></math></span> and an isolated vertex <span><math><mi>w</mi></math></span>, and its edge set is <span><math><mrow><mi>E</mi><mo>∪</mo><mrow><mo>{</mo><msubsup><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>′</mo></mrow></msubsup><msub><mrow><mi>v</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>:</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub><msub><mrow><mi>v</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>∈</mo><mi>E</mi><mo>}</mo></mrow><mo>∪</mo><mrow><mo>{</mo><msubsup><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mi>w</mi><mo>:</mo><msubsup><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mo>∈</mo><msup><mrow><mi>V</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>}</mo></mrow></mrow></math></span>. The Mycielskian of a signed graph <span><math><mrow><mi>Σ</mi><mo>=</mo><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>σ</mi><mo>)</mo></mrow></mrow></math></span> is the signed graph <span><math><mrow><mi>μ</mi><mrow><mo>(</mo><mi>Σ</mi><mo>)</mo></mrow><mo>=</mo><mrow><mo>(</mo><mi>μ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>,</mo><msub><mrow><mi>σ</mi></mrow><mrow><mi>μ</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span>, where the signature <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>μ</mi></mrow></msub></math></span> is defined as <span><math><mrow><msub><mrow><mi>σ</mi></mrow><mrow><mi>μ</mi></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub><msub><mrow><mi>v</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>σ</mi></mrow><mrow><mi>μ</mi></mrow></msub><mrow><mo>(</mo><msubsup><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>′</mo></mrow></msubsup><msub><mrow><mi>v</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mi>σ</mi><mrow><mo>(</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub><msub><mrow><mi>v</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msub><mrow><mi>σ</mi></mrow><mrow><mi>μ</mi></mrow></msub><mrow><mo>(</mo><msubsup><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mi>w</mi><mo>)</mo></mrow><mo>=</mo><mn>1</mn></mrow></math></span>. In this paper, we compute the characteristic polynomial of the adjacency matrix of <span><math><mrow><mi>μ</mi><mrow><mo>(</mo><mi>Σ</mi><mo>)</mo></mrow></mrow></math></span>, and extract the entire spectrum as well as the Laplacian spectrum, the net Laplacian spectrum and the normalized Laplacian spectrum, when <span><math><mi>Σ</mi></math></span> satisfies particular regularity conditions. For the signed graphs <span><math><msub><mrow><mi>Σ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>Σ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, we introduce three products based on <span><math><mrow><mi>μ</mi><mrow><mo>(</mo><msub><mrow><mi>Σ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow></mrow></math></span>. For each of them, we compute the characteristic polynomial of the adjacency matrix or the Laplacian matrix, and extract the corresponding spectra either in general case or in particular case imposing regularity conditions for both constituents. As an application, we construct infinitely many pairs of switching non-isomorphic signed graphs that share the same spectrum or the Laplacian spectrum. Finally, we compute the Kirchhoff index and the number of spanning trees of <span><math><mrow><mi>μ</mi><mrow><mo>(</mo><mi>Σ</mi><mo>)</mo></mrow></mrow></math></span> and every product, whenever the constituents are ordinary connected regular graphs.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"370 ","pages":"Pages 124-144"},"PeriodicalIF":1.0000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X2500143X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In a search for graphs with arbitrarily large chromatic number, Mycielski has offered a construction that transforms a graph G=(V,E) into a new graph μ(G), which is called the Mycielskian of G. Recently, the same concept is transferred to the framework of signed graphs. Accordingly, if V={v1,v2,,vn} and E={e1,e2,,en}, then the vertex set of μ(G) is the disjoint union of V, V={v1,v2,,vn} and an isolated vertex w, and its edge set is E{vivj:vivjE}{viw:viV}. The Mycielskian of a signed graph Σ=(G,σ) is the signed graph μ(Σ)=(μ(G),σμ), where the signature σμ is defined as σμ(vivj)=σμ(vivj)=σ(vivj) and σμ(viw)=1. In this paper, we compute the characteristic polynomial of the adjacency matrix of μ(Σ), and extract the entire spectrum as well as the Laplacian spectrum, the net Laplacian spectrum and the normalized Laplacian spectrum, when Σ satisfies particular regularity conditions. For the signed graphs Σ1 and Σ2, we introduce three products based on μ(Σ1). For each of them, we compute the characteristic polynomial of the adjacency matrix or the Laplacian matrix, and extract the corresponding spectra either in general case or in particular case imposing regularity conditions for both constituents. As an application, we construct infinitely many pairs of switching non-isomorphic signed graphs that share the same spectrum or the Laplacian spectrum. Finally, we compute the Kirchhoff index and the number of spanning trees of μ(Σ) and every product, whenever the constituents are ordinary connected regular graphs.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信