{"title":"Spectra of the Mycielskian of a signed graph and related products","authors":"Mir Riyaz Ul Rashid , S. Pirzada , Zoran Stanić","doi":"10.1016/j.dam.2025.03.017","DOIUrl":null,"url":null,"abstract":"<div><div>In a search for graphs with arbitrarily large chromatic number, Mycielski has offered a construction that transforms a graph <span><math><mrow><mi>G</mi><mo>=</mo><mrow><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></mrow></math></span> into a new graph <span><math><mrow><mi>μ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, which is called the Mycielskian of <span><math><mi>G</mi></math></span>. Recently, the same concept is transferred to the framework of signed graphs. Accordingly, if <span><math><mrow><mi>V</mi><mo>=</mo><mrow><mo>{</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>}</mo></mrow></mrow></math></span> and <span><math><mrow><mi>E</mi><mo>=</mo><mrow><mo>{</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>e</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>}</mo></mrow></mrow></math></span>, then the vertex set of <span><math><mrow><mi>μ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is the disjoint union of <span><math><mi>V</mi></math></span>, <span><math><mrow><msup><mrow><mi>V</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>=</mo><mrow><mo>{</mo><msubsup><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>′</mo></mrow></msubsup><mo>,</mo><msubsup><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow><mrow><mo>′</mo></mrow></msubsup><mo>,</mo><mo>…</mo><mo>,</mo><msubsup><mrow><mi>v</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mo>}</mo></mrow></mrow></math></span> and an isolated vertex <span><math><mi>w</mi></math></span>, and its edge set is <span><math><mrow><mi>E</mi><mo>∪</mo><mrow><mo>{</mo><msubsup><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>′</mo></mrow></msubsup><msub><mrow><mi>v</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>:</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub><msub><mrow><mi>v</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>∈</mo><mi>E</mi><mo>}</mo></mrow><mo>∪</mo><mrow><mo>{</mo><msubsup><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mi>w</mi><mo>:</mo><msubsup><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mo>∈</mo><msup><mrow><mi>V</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>}</mo></mrow></mrow></math></span>. The Mycielskian of a signed graph <span><math><mrow><mi>Σ</mi><mo>=</mo><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>σ</mi><mo>)</mo></mrow></mrow></math></span> is the signed graph <span><math><mrow><mi>μ</mi><mrow><mo>(</mo><mi>Σ</mi><mo>)</mo></mrow><mo>=</mo><mrow><mo>(</mo><mi>μ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>,</mo><msub><mrow><mi>σ</mi></mrow><mrow><mi>μ</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span>, where the signature <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>μ</mi></mrow></msub></math></span> is defined as <span><math><mrow><msub><mrow><mi>σ</mi></mrow><mrow><mi>μ</mi></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub><msub><mrow><mi>v</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>σ</mi></mrow><mrow><mi>μ</mi></mrow></msub><mrow><mo>(</mo><msubsup><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>′</mo></mrow></msubsup><msub><mrow><mi>v</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mi>σ</mi><mrow><mo>(</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub><msub><mrow><mi>v</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msub><mrow><mi>σ</mi></mrow><mrow><mi>μ</mi></mrow></msub><mrow><mo>(</mo><msubsup><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mi>w</mi><mo>)</mo></mrow><mo>=</mo><mn>1</mn></mrow></math></span>. In this paper, we compute the characteristic polynomial of the adjacency matrix of <span><math><mrow><mi>μ</mi><mrow><mo>(</mo><mi>Σ</mi><mo>)</mo></mrow></mrow></math></span>, and extract the entire spectrum as well as the Laplacian spectrum, the net Laplacian spectrum and the normalized Laplacian spectrum, when <span><math><mi>Σ</mi></math></span> satisfies particular regularity conditions. For the signed graphs <span><math><msub><mrow><mi>Σ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>Σ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, we introduce three products based on <span><math><mrow><mi>μ</mi><mrow><mo>(</mo><msub><mrow><mi>Σ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></mrow></mrow></math></span>. For each of them, we compute the characteristic polynomial of the adjacency matrix or the Laplacian matrix, and extract the corresponding spectra either in general case or in particular case imposing regularity conditions for both constituents. As an application, we construct infinitely many pairs of switching non-isomorphic signed graphs that share the same spectrum or the Laplacian spectrum. Finally, we compute the Kirchhoff index and the number of spanning trees of <span><math><mrow><mi>μ</mi><mrow><mo>(</mo><mi>Σ</mi><mo>)</mo></mrow></mrow></math></span> and every product, whenever the constituents are ordinary connected regular graphs.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"370 ","pages":"Pages 124-144"},"PeriodicalIF":1.0000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X2500143X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In a search for graphs with arbitrarily large chromatic number, Mycielski has offered a construction that transforms a graph into a new graph , which is called the Mycielskian of . Recently, the same concept is transferred to the framework of signed graphs. Accordingly, if and , then the vertex set of is the disjoint union of , and an isolated vertex , and its edge set is . The Mycielskian of a signed graph is the signed graph , where the signature is defined as and . In this paper, we compute the characteristic polynomial of the adjacency matrix of , and extract the entire spectrum as well as the Laplacian spectrum, the net Laplacian spectrum and the normalized Laplacian spectrum, when satisfies particular regularity conditions. For the signed graphs and , we introduce three products based on . For each of them, we compute the characteristic polynomial of the adjacency matrix or the Laplacian matrix, and extract the corresponding spectra either in general case or in particular case imposing regularity conditions for both constituents. As an application, we construct infinitely many pairs of switching non-isomorphic signed graphs that share the same spectrum or the Laplacian spectrum. Finally, we compute the Kirchhoff index and the number of spanning trees of and every product, whenever the constituents are ordinary connected regular graphs.
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.