Zhuwei Liu , Lin Li , Tingsan Song , Rui Wang , Mingxin Li , Yusheng Wang , Dani Zuo , Dongmei Bi
{"title":"Coupled Fenton oxidation and photocatalytic pretreatment: A novel strategy for reducing AAEMs in biomass to enhance coal co-combustion performance","authors":"Zhuwei Liu , Lin Li , Tingsan Song , Rui Wang , Mingxin Li , Yusheng Wang , Dani Zuo , Dongmei Bi","doi":"10.1016/j.fuproc.2025.108211","DOIUrl":null,"url":null,"abstract":"<div><div>The high content of alkali and alkaline earth metals (AAEMs) in biomass fuels exacerbates slagging and corrosion during co-combustion with coal, thereby limiting industrial utilization. To address these challenges, this study proposes a green pretreatment combining Fenton and photocatalytic processes. Walnut shells (WS) were treated with g-C<sub>3</sub>N<sub>4</sub>-loaded calcium alginate microbeads under simultaneous simulated daylight irradiation and Fenton oxidation. Thermogravimetric analysis was employed to investigate the combustion characteristics of coal blended with pretreated and untreated WS. Results demonstrated a 170 % enhancement in the combustion performance index (<em>S</em>) at a heating rate of 20 °C/min. X-ray fluorescence (XRF) analysis revealed that the pretreatment reduced AAEMs content by 53.5 %, specifically decreasing K₂O and Na₂O concentrations in ash from 5.21 % to 0.87 %. Slagging indices analysis further confirmed mitigated fouling risks, showing a low slagging index of 0.158 and a fouling index of 0.129. Kinetic analysis using model-free methods indicated a 12.8 % increase in activation energy (<em>E</em> = 149.94 kJ/mol for pretreated walnut shells-coal blends compared to 132.91 kJ/mol for untreated blends), indicating a suppression of the catalytic effects of AAEMs on coal degradation. This work establishes a sustainable strategy for optimizing biomass-coal co-combustion systems with improved environmental compatibility and industrial applicability.</div></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"272 ","pages":"Article 108211"},"PeriodicalIF":7.2000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel Processing Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378382025000359","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The high content of alkali and alkaline earth metals (AAEMs) in biomass fuels exacerbates slagging and corrosion during co-combustion with coal, thereby limiting industrial utilization. To address these challenges, this study proposes a green pretreatment combining Fenton and photocatalytic processes. Walnut shells (WS) were treated with g-C3N4-loaded calcium alginate microbeads under simultaneous simulated daylight irradiation and Fenton oxidation. Thermogravimetric analysis was employed to investigate the combustion characteristics of coal blended with pretreated and untreated WS. Results demonstrated a 170 % enhancement in the combustion performance index (S) at a heating rate of 20 °C/min. X-ray fluorescence (XRF) analysis revealed that the pretreatment reduced AAEMs content by 53.5 %, specifically decreasing K₂O and Na₂O concentrations in ash from 5.21 % to 0.87 %. Slagging indices analysis further confirmed mitigated fouling risks, showing a low slagging index of 0.158 and a fouling index of 0.129. Kinetic analysis using model-free methods indicated a 12.8 % increase in activation energy (E = 149.94 kJ/mol for pretreated walnut shells-coal blends compared to 132.91 kJ/mol for untreated blends), indicating a suppression of the catalytic effects of AAEMs on coal degradation. This work establishes a sustainable strategy for optimizing biomass-coal co-combustion systems with improved environmental compatibility and industrial applicability.
期刊介绍:
Fuel Processing Technology (FPT) deals with the scientific and technological aspects of converting fossil and renewable resources to clean fuels, value-added chemicals, fuel-related advanced carbon materials and by-products. In addition to the traditional non-nuclear fossil fuels, biomass and wastes, papers on the integration of renewables such as solar and wind energy and energy storage into the fuel processing processes, as well as papers on the production and conversion of non-carbon-containing fuels such as hydrogen and ammonia, are also welcome. While chemical conversion is emphasized, papers on advanced physical conversion processes are also considered for publication in FPT. Papers on the fundamental aspects of fuel structure and properties will also be considered.