Thermo-economic evaluation of a solar and SOFC-based power and freshwater co-production system

IF 6.1 2区 工程技术 Q2 ENERGY & FUELS
Xianqi Zhou , Huailiang You , Guoxiang Li , Jitian Han , Yan Xiao , Bin Hu , Ze-Hang Chen , Daifen Chen
{"title":"Thermo-economic evaluation of a solar and SOFC-based power and freshwater co-production system","authors":"Xianqi Zhou ,&nbsp;Huailiang You ,&nbsp;Guoxiang Li ,&nbsp;Jitian Han ,&nbsp;Yan Xiao ,&nbsp;Bin Hu ,&nbsp;Ze-Hang Chen ,&nbsp;Daifen Chen","doi":"10.1016/j.applthermaleng.2025.126290","DOIUrl":null,"url":null,"abstract":"<div><div>Fuel cell has been proved as one of the most efficient energy conversion technologies, while investigations on energy and economic feasibility of advanced energy systems integrated with fuel cells and renewable energy are still needed. This study proposes a novel co-production system mainly coupled with a proton exchange membrane electrolyzer, a solid oxide fuel cell, a multi-effect desalination unit, and a dual pressure organic Rankine cycle to pursue cleaner productions of electricity and freshwater. The system feasibility is evaluated by using energy, exergy, and economic analysis methods. The thermo-economic analysis result indicates that the system energy and exergy efficiencies under basal scenario are 61.06 % and 40.83 %. The power and freshwater productions are found to be 200.1 kW and 0.264 kg/s with the levelized cost rates of 0.0628 $/kWh and 0.0132 $/kg. Parametric study is conducted to reveal the effects of system core parameters on system performance. The analysis result illustrates that the system thermodynamic performance is conflicted with the desalination and economic performance when key parameters are adjusted. To balance the performance conflicts, multi-objective optimization is further performed to obtain optimal system performance in different working scenarios. The optimization result demonstrates that the highest system energy and exergy efficiencies are obtained in scenario A of first optimization, which are 11.46 % and 11.24 % higher than the basal scenario. The highest freshwater production is obtained in scenario C of second optimization with the value of 0.391 kg/s, while the total exergy efficiency and power output are the lowest.</div></div>","PeriodicalId":8201,"journal":{"name":"Applied Thermal Engineering","volume":"271 ","pages":"Article 126290"},"PeriodicalIF":6.1000,"publicationDate":"2025-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359431125008828","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Fuel cell has been proved as one of the most efficient energy conversion technologies, while investigations on energy and economic feasibility of advanced energy systems integrated with fuel cells and renewable energy are still needed. This study proposes a novel co-production system mainly coupled with a proton exchange membrane electrolyzer, a solid oxide fuel cell, a multi-effect desalination unit, and a dual pressure organic Rankine cycle to pursue cleaner productions of electricity and freshwater. The system feasibility is evaluated by using energy, exergy, and economic analysis methods. The thermo-economic analysis result indicates that the system energy and exergy efficiencies under basal scenario are 61.06 % and 40.83 %. The power and freshwater productions are found to be 200.1 kW and 0.264 kg/s with the levelized cost rates of 0.0628 $/kWh and 0.0132 $/kg. Parametric study is conducted to reveal the effects of system core parameters on system performance. The analysis result illustrates that the system thermodynamic performance is conflicted with the desalination and economic performance when key parameters are adjusted. To balance the performance conflicts, multi-objective optimization is further performed to obtain optimal system performance in different working scenarios. The optimization result demonstrates that the highest system energy and exergy efficiencies are obtained in scenario A of first optimization, which are 11.46 % and 11.24 % higher than the basal scenario. The highest freshwater production is obtained in scenario C of second optimization with the value of 0.391 kg/s, while the total exergy efficiency and power output are the lowest.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Thermal Engineering
Applied Thermal Engineering 工程技术-工程:机械
CiteScore
11.30
自引率
15.60%
发文量
1474
审稿时长
57 days
期刊介绍: Applied Thermal Engineering disseminates novel research related to the design, development and demonstration of components, devices, equipment, technologies and systems involving thermal processes for the production, storage, utilization and conservation of energy, with a focus on engineering application. The journal publishes high-quality and high-impact Original Research Articles, Review Articles, Short Communications and Letters to the Editor on cutting-edge innovations in research, and recent advances or issues of interest to the thermal engineering community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信