IL-2-loaded liposomes modified with sorafenib derivative exert a synergistic anti-melanoma effect via improving tumor immune microenvironment and enhancing antiangiogenic activity

IF 10.7 1区 医学 Q1 PHARMACOLOGY & PHARMACY
Xuan Huang , Kudelaidi Kuerban , Jajun Fan , Danjie Pan , Huaning Chen , Jiayang Liu , Songna Wang , Dianwen Ju , Yi Zhun Zhu , Jiyong Liu , Li Ye
{"title":"IL-2-loaded liposomes modified with sorafenib derivative exert a synergistic anti-melanoma effect via improving tumor immune microenvironment and enhancing antiangiogenic activity","authors":"Xuan Huang ,&nbsp;Kudelaidi Kuerban ,&nbsp;Jajun Fan ,&nbsp;Danjie Pan ,&nbsp;Huaning Chen ,&nbsp;Jiayang Liu ,&nbsp;Songna Wang ,&nbsp;Dianwen Ju ,&nbsp;Yi Zhun Zhu ,&nbsp;Jiyong Liu ,&nbsp;Li Ye","doi":"10.1016/j.ajps.2025.101020","DOIUrl":null,"url":null,"abstract":"<div><div>Immunotherapy with interleukin-2 (IL-2) in treating cancers is subject to several limitations such as systemic side effects and reduced efficacy against tumors with low immune cell infiltration despite its promise. To address these challenges, IL-2-So-Lipo, a novel liposomal formulation combining IL-2 with sorafenib derivative, was developed as an anti-angiogenic drug that inhibits the growth of new blood vessels which play crucial roles in tumor growth. Sorafenib derivatives could target at melanoma-specific receptors, further enhancing liposomal specificity at the tumor site. Our results demonstrated that the prepared IL-2-So-Lipo significantly enhanced anti-tumor activity compared to IL-2 or sorafenib monotherapies, as well as their combination. In a B16F10 melanoma model, IL-2-So-Lipo was found to significantly inhibit tumor progression (tumor volume of 108.01 ± 62.99 mm<sup>3</sup>) compared to the control group (tumor volume of 1,397.13 ± 75.55 mm<sup>3</sup>), improving the therapeutic efficacy. This enhanced efficacy is attributed to the targeted delivery of IL-2 which promoted the infiltration and activation of cytotoxic T lymphocytes. Additionally, liposomal encapsulation of sorafenib derivatives enhanced its delivery efficiency, promoting tumor cell apoptosis and suppressing angiogenesis. Mechanistically, IL-2-So-Lipo could kill tumors by inducing a shift towards an anti-tumor immune response via facilitating the polarization of macrophages towards the M1 phenotype. Furthermore, IL-2-So-Lipo downregulated several key proteins in the MAPK signaling pathway, exerting a significant role in mediating tumor resistance to sorafenib. These findings underscore the potential of IL-2-So-Lipo as a promising strategy to improve the therapeutic efficacy of immunotherapy and targeted therapy in cancers. Moreover, the combination of IL-2 and sorafenib in a liposomal delivery system overcame the limitations of conventional IL-2 therapy, offering a synergistic approach to improve therapeutic outcomes for solid tumors.</div></div>","PeriodicalId":8539,"journal":{"name":"Asian Journal of Pharmaceutical Sciences","volume":"20 2","pages":"Article 101020"},"PeriodicalIF":10.7000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Pharmaceutical Sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1818087625000066","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Immunotherapy with interleukin-2 (IL-2) in treating cancers is subject to several limitations such as systemic side effects and reduced efficacy against tumors with low immune cell infiltration despite its promise. To address these challenges, IL-2-So-Lipo, a novel liposomal formulation combining IL-2 with sorafenib derivative, was developed as an anti-angiogenic drug that inhibits the growth of new blood vessels which play crucial roles in tumor growth. Sorafenib derivatives could target at melanoma-specific receptors, further enhancing liposomal specificity at the tumor site. Our results demonstrated that the prepared IL-2-So-Lipo significantly enhanced anti-tumor activity compared to IL-2 or sorafenib monotherapies, as well as their combination. In a B16F10 melanoma model, IL-2-So-Lipo was found to significantly inhibit tumor progression (tumor volume of 108.01 ± 62.99 mm3) compared to the control group (tumor volume of 1,397.13 ± 75.55 mm3), improving the therapeutic efficacy. This enhanced efficacy is attributed to the targeted delivery of IL-2 which promoted the infiltration and activation of cytotoxic T lymphocytes. Additionally, liposomal encapsulation of sorafenib derivatives enhanced its delivery efficiency, promoting tumor cell apoptosis and suppressing angiogenesis. Mechanistically, IL-2-So-Lipo could kill tumors by inducing a shift towards an anti-tumor immune response via facilitating the polarization of macrophages towards the M1 phenotype. Furthermore, IL-2-So-Lipo downregulated several key proteins in the MAPK signaling pathway, exerting a significant role in mediating tumor resistance to sorafenib. These findings underscore the potential of IL-2-So-Lipo as a promising strategy to improve the therapeutic efficacy of immunotherapy and targeted therapy in cancers. Moreover, the combination of IL-2 and sorafenib in a liposomal delivery system overcame the limitations of conventional IL-2 therapy, offering a synergistic approach to improve therapeutic outcomes for solid tumors.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Asian Journal of Pharmaceutical Sciences
Asian Journal of Pharmaceutical Sciences Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
18.30
自引率
2.90%
发文量
11
审稿时长
14 days
期刊介绍: The Asian Journal of Pharmaceutical Sciences (AJPS) serves as the official journal of the Asian Federation for Pharmaceutical Sciences (AFPS). Recognized by the Science Citation Index Expanded (SCIE), AJPS offers a platform for the reporting of advancements, production methodologies, technologies, initiatives, and the practical application of scientific knowledge in the field of pharmaceutics. The journal covers a wide range of topics including but not limited to controlled drug release systems, drug targeting, physical pharmacy, pharmacodynamics, pharmacokinetics, pharmacogenomics, biopharmaceutics, drug and prodrug design, pharmaceutical analysis, drug stability, quality control, pharmaceutical engineering, and material sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信