IL-2-loaded liposomes modified with sorafenib derivative exert a synergistic anti-melanoma effect via improving tumor immune microenvironment and enhancing antiangiogenic activity
Xuan Huang , Kudelaidi Kuerban , Jajun Fan , Danjie Pan , Huaning Chen , Jiayang Liu , Songna Wang , Dianwen Ju , Yi Zhun Zhu , Jiyong Liu , Li Ye
{"title":"IL-2-loaded liposomes modified with sorafenib derivative exert a synergistic anti-melanoma effect via improving tumor immune microenvironment and enhancing antiangiogenic activity","authors":"Xuan Huang , Kudelaidi Kuerban , Jajun Fan , Danjie Pan , Huaning Chen , Jiayang Liu , Songna Wang , Dianwen Ju , Yi Zhun Zhu , Jiyong Liu , Li Ye","doi":"10.1016/j.ajps.2025.101020","DOIUrl":null,"url":null,"abstract":"<div><div>Immunotherapy with interleukin-2 (IL-2) in treating cancers is subject to several limitations such as systemic side effects and reduced efficacy against tumors with low immune cell infiltration despite its promise. To address these challenges, IL-2-So-Lipo, a novel liposomal formulation combining IL-2 with sorafenib derivative, was developed as an anti-angiogenic drug that inhibits the growth of new blood vessels which play crucial roles in tumor growth. Sorafenib derivatives could target at melanoma-specific receptors, further enhancing liposomal specificity at the tumor site. Our results demonstrated that the prepared IL-2-So-Lipo significantly enhanced anti-tumor activity compared to IL-2 or sorafenib monotherapies, as well as their combination. In a B16F10 melanoma model, IL-2-So-Lipo was found to significantly inhibit tumor progression (tumor volume of 108.01 ± 62.99 mm<sup>3</sup>) compared to the control group (tumor volume of 1,397.13 ± 75.55 mm<sup>3</sup>), improving the therapeutic efficacy. This enhanced efficacy is attributed to the targeted delivery of IL-2 which promoted the infiltration and activation of cytotoxic T lymphocytes. Additionally, liposomal encapsulation of sorafenib derivatives enhanced its delivery efficiency, promoting tumor cell apoptosis and suppressing angiogenesis. Mechanistically, IL-2-So-Lipo could kill tumors by inducing a shift towards an anti-tumor immune response via facilitating the polarization of macrophages towards the M1 phenotype. Furthermore, IL-2-So-Lipo downregulated several key proteins in the MAPK signaling pathway, exerting a significant role in mediating tumor resistance to sorafenib. These findings underscore the potential of IL-2-So-Lipo as a promising strategy to improve the therapeutic efficacy of immunotherapy and targeted therapy in cancers. Moreover, the combination of IL-2 and sorafenib in a liposomal delivery system overcame the limitations of conventional IL-2 therapy, offering a synergistic approach to improve therapeutic outcomes for solid tumors.</div></div>","PeriodicalId":8539,"journal":{"name":"Asian Journal of Pharmaceutical Sciences","volume":"20 2","pages":"Article 101020"},"PeriodicalIF":10.7000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Pharmaceutical Sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1818087625000066","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Immunotherapy with interleukin-2 (IL-2) in treating cancers is subject to several limitations such as systemic side effects and reduced efficacy against tumors with low immune cell infiltration despite its promise. To address these challenges, IL-2-So-Lipo, a novel liposomal formulation combining IL-2 with sorafenib derivative, was developed as an anti-angiogenic drug that inhibits the growth of new blood vessels which play crucial roles in tumor growth. Sorafenib derivatives could target at melanoma-specific receptors, further enhancing liposomal specificity at the tumor site. Our results demonstrated that the prepared IL-2-So-Lipo significantly enhanced anti-tumor activity compared to IL-2 or sorafenib monotherapies, as well as their combination. In a B16F10 melanoma model, IL-2-So-Lipo was found to significantly inhibit tumor progression (tumor volume of 108.01 ± 62.99 mm3) compared to the control group (tumor volume of 1,397.13 ± 75.55 mm3), improving the therapeutic efficacy. This enhanced efficacy is attributed to the targeted delivery of IL-2 which promoted the infiltration and activation of cytotoxic T lymphocytes. Additionally, liposomal encapsulation of sorafenib derivatives enhanced its delivery efficiency, promoting tumor cell apoptosis and suppressing angiogenesis. Mechanistically, IL-2-So-Lipo could kill tumors by inducing a shift towards an anti-tumor immune response via facilitating the polarization of macrophages towards the M1 phenotype. Furthermore, IL-2-So-Lipo downregulated several key proteins in the MAPK signaling pathway, exerting a significant role in mediating tumor resistance to sorafenib. These findings underscore the potential of IL-2-So-Lipo as a promising strategy to improve the therapeutic efficacy of immunotherapy and targeted therapy in cancers. Moreover, the combination of IL-2 and sorafenib in a liposomal delivery system overcame the limitations of conventional IL-2 therapy, offering a synergistic approach to improve therapeutic outcomes for solid tumors.
期刊介绍:
The Asian Journal of Pharmaceutical Sciences (AJPS) serves as the official journal of the Asian Federation for Pharmaceutical Sciences (AFPS). Recognized by the Science Citation Index Expanded (SCIE), AJPS offers a platform for the reporting of advancements, production methodologies, technologies, initiatives, and the practical application of scientific knowledge in the field of pharmaceutics. The journal covers a wide range of topics including but not limited to controlled drug release systems, drug targeting, physical pharmacy, pharmacodynamics, pharmacokinetics, pharmacogenomics, biopharmaceutics, drug and prodrug design, pharmaceutical analysis, drug stability, quality control, pharmaceutical engineering, and material sciences.