Online optimization enhanced closed-loop control of multi-section continuum robots

IF 4.3 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Laihao Yang , Yi Zheng , Yu Sun, Xuefeng Chen
{"title":"Online optimization enhanced closed-loop control of multi-section continuum robots","authors":"Laihao Yang ,&nbsp;Yi Zheng ,&nbsp;Yu Sun,&nbsp;Xuefeng Chen","doi":"10.1016/j.robot.2025.104986","DOIUrl":null,"url":null,"abstract":"<div><div>Due to the inherent characteristics of continuum robots (high flexibility, multiple degrees of freedom), controlling the continuum robots safely and precisely in practical applications has always been a challenging task. In this paper,a real-time kinematic closed-loop controller that optimizes the step length to boost control performance is proposed. Initially, a differential-based generalized inverse kinematics solution is formulated to resolve the DOF coupling in twin-pivot continuum robots that intertwined two DOFs in one joint. Subsequently, an adaptive online optimization strategy utilizing the algorithm of Particle Swarm Optimization (PSO) is proposed to refine the controller, overcoming the limitations of traditional Jacobian-based approaches. This novel method innovatively decouples control direction and step length, optimizing safety and efficiency. Comparative simulations and tracking tests confirm the controller's superior precision and efficiency, with an average accuracy of 0.33 %, a 35 % enhancement over the Jacobian controller, thus facilitating the broader application of multi-section continuum robots.</div></div>","PeriodicalId":49592,"journal":{"name":"Robotics and Autonomous Systems","volume":"189 ","pages":"Article 104986"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics and Autonomous Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921889025000727","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the inherent characteristics of continuum robots (high flexibility, multiple degrees of freedom), controlling the continuum robots safely and precisely in practical applications has always been a challenging task. In this paper,a real-time kinematic closed-loop controller that optimizes the step length to boost control performance is proposed. Initially, a differential-based generalized inverse kinematics solution is formulated to resolve the DOF coupling in twin-pivot continuum robots that intertwined two DOFs in one joint. Subsequently, an adaptive online optimization strategy utilizing the algorithm of Particle Swarm Optimization (PSO) is proposed to refine the controller, overcoming the limitations of traditional Jacobian-based approaches. This novel method innovatively decouples control direction and step length, optimizing safety and efficiency. Comparative simulations and tracking tests confirm the controller's superior precision and efficiency, with an average accuracy of 0.33 %, a 35 % enhancement over the Jacobian controller, thus facilitating the broader application of multi-section continuum robots.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Robotics and Autonomous Systems
Robotics and Autonomous Systems 工程技术-机器人学
CiteScore
9.00
自引率
7.00%
发文量
164
审稿时长
4.5 months
期刊介绍: Robotics and Autonomous Systems will carry articles describing fundamental developments in the field of robotics, with special emphasis on autonomous systems. An important goal of this journal is to extend the state of the art in both symbolic and sensory based robot control and learning in the context of autonomous systems. Robotics and Autonomous Systems will carry articles on the theoretical, computational and experimental aspects of autonomous systems, or modules of such systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信