Differentiation of diamond surface damage affecting heteroepitaxial growth of cBN on diamond film by shift of XPS C 1s peak

IF 4.3 3区 材料科学 Q2 MATERIALS SCIENCE, COATINGS & FILMS
Y.-H. Choi , J.-Y. Huh , J.-K. Park , W.-S. Lee , Y.-J. Baik
{"title":"Differentiation of diamond surface damage affecting heteroepitaxial growth of cBN on diamond film by shift of XPS C 1s peak","authors":"Y.-H. Choi ,&nbsp;J.-Y. Huh ,&nbsp;J.-K. Park ,&nbsp;W.-S. Lee ,&nbsp;Y.-J. Baik","doi":"10.1016/j.diamond.2025.112228","DOIUrl":null,"url":null,"abstract":"<div><div>The effect of ion-induced damage on diamond surface was investigated during the deposition of a heteroepitaxial cubic boron nitride (cBN) film on a diamond substrate. A microcrystalline diamond thin film deposited on a single crystal Si wafer through hot-filament chemical vapor deposition was utilized as the substrate. Boron nitride (BN) films were deposited via unbalanced magnetron sputtering using a B<sub>4</sub>C target. The damage level of the diamond surface during BN deposition was analyzed based on changes in the <em>C</em>1 s spectrum via X-ray photoelectron spectroscopy (XPS) measurements. Additionally, the cBN fraction in the early stages of BN deposition was estimated from XPS and Fourier-transform infrared spectroscopy results. Results showed that increasing the exposure time of ion bombardment progressively disrupted the bonding between surface diamond atoms, thus resulting in severe bonding loss at the surface atomic level and the formation of independent phases. The deposition conditions that maintain the coherence between cBN and diamond are achievable within the low-energy range required for the formation of the cBN phase. These conditions can be determined based on variations in the XPS <em>C</em>1 s peak. Results of transmission electron microscopy show that the cBN film exhibited a partially epitaxial relationship with the diamond substrate.</div></div>","PeriodicalId":11266,"journal":{"name":"Diamond and Related Materials","volume":"154 ","pages":"Article 112228"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diamond and Related Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925963525002857","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0

Abstract

The effect of ion-induced damage on diamond surface was investigated during the deposition of a heteroepitaxial cubic boron nitride (cBN) film on a diamond substrate. A microcrystalline diamond thin film deposited on a single crystal Si wafer through hot-filament chemical vapor deposition was utilized as the substrate. Boron nitride (BN) films were deposited via unbalanced magnetron sputtering using a B4C target. The damage level of the diamond surface during BN deposition was analyzed based on changes in the C1 s spectrum via X-ray photoelectron spectroscopy (XPS) measurements. Additionally, the cBN fraction in the early stages of BN deposition was estimated from XPS and Fourier-transform infrared spectroscopy results. Results showed that increasing the exposure time of ion bombardment progressively disrupted the bonding between surface diamond atoms, thus resulting in severe bonding loss at the surface atomic level and the formation of independent phases. The deposition conditions that maintain the coherence between cBN and diamond are achievable within the low-energy range required for the formation of the cBN phase. These conditions can be determined based on variations in the XPS C1 s peak. Results of transmission electron microscopy show that the cBN film exhibited a partially epitaxial relationship with the diamond substrate.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Diamond and Related Materials
Diamond and Related Materials 工程技术-材料科学:综合
CiteScore
6.00
自引率
14.60%
发文量
702
审稿时长
2.1 months
期刊介绍: DRM is a leading international journal that publishes new fundamental and applied research on all forms of diamond, the integration of diamond with other advanced materials and development of technologies exploiting diamond. The synthesis, characterization and processing of single crystal diamond, polycrystalline films, nanodiamond powders and heterostructures with other advanced materials are encouraged topics for technical and review articles. In addition to diamond, the journal publishes manuscripts on the synthesis, characterization and application of other related materials including diamond-like carbons, carbon nanotubes, graphene, and boron and carbon nitrides. Articles are sought on the chemical functionalization of diamond and related materials as well as their use in electrochemistry, energy storage and conversion, chemical and biological sensing, imaging, thermal management, photonic and quantum applications, electron emission and electronic devices. The International Conference on Diamond and Carbon Materials has evolved into the largest and most well attended forum in the field of diamond, providing a forum to showcase the latest results in the science and technology of diamond and other carbon materials such as carbon nanotubes, graphene, and diamond-like carbon. Run annually in association with Diamond and Related Materials the conference provides junior and established researchers the opportunity to exchange the latest results ranging from fundamental physical and chemical concepts to applied research focusing on the next generation carbon-based devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信