Mohamed Ahmed Said , Hakim S. Sultan Aljibori , Azher M. Abed , Hussein Togun , Hayder Ibrahim Mohammed , Jasim M. Mahdi , Alireza Rahbari , Abdellatif M. Sadeq , Pouyan Talebizadehsardari
{"title":"Innovative pipe profile configurations for fast charging of phase change material in compact thermal storage systems for building heating applications","authors":"Mohamed Ahmed Said , Hakim S. Sultan Aljibori , Azher M. Abed , Hussein Togun , Hayder Ibrahim Mohammed , Jasim M. Mahdi , Alireza Rahbari , Abdellatif M. Sadeq , Pouyan Talebizadehsardari","doi":"10.1016/j.csite.2025.106036","DOIUrl":null,"url":null,"abstract":"<div><div>The depletion of fossil fuel reserves and growing energy demand have increased the need for renewable energy sources with suitable heat storage systems. Latent heat thermal energy storage (LHTES) using phase change materials (PCMs) provides high energy density and efficiency. However, heat transfer to the PCM core remains a challenge. This study investigates step, sinusoidal, and zigzag channel designs within a horizontal triple-tube LHTES system to enhance PCM charging rates. The step function geometry offered superior performance, increasing heat storage rate by 145 % and reducing melting time by 51 % versus straight channels. Detailed parametric analysis revealed that reducing step width from 15 mm to 5 mm improved heat storage rate by 18 % and shortened melting time by 14 %. Lengthening steps from 5 mm to 15 mm enhanced heat storage rate by 88 % and accelerated melting by 48 %. The novel step design improved temperature distrbution, drove recirculation enhancing convection, and increased surface area. These insights can guide engineering of efficient LHTES systems, advancing sustainable energy storage solutions.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"69 ","pages":"Article 106036"},"PeriodicalIF":6.4000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214157X25002965","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
The depletion of fossil fuel reserves and growing energy demand have increased the need for renewable energy sources with suitable heat storage systems. Latent heat thermal energy storage (LHTES) using phase change materials (PCMs) provides high energy density and efficiency. However, heat transfer to the PCM core remains a challenge. This study investigates step, sinusoidal, and zigzag channel designs within a horizontal triple-tube LHTES system to enhance PCM charging rates. The step function geometry offered superior performance, increasing heat storage rate by 145 % and reducing melting time by 51 % versus straight channels. Detailed parametric analysis revealed that reducing step width from 15 mm to 5 mm improved heat storage rate by 18 % and shortened melting time by 14 %. Lengthening steps from 5 mm to 15 mm enhanced heat storage rate by 88 % and accelerated melting by 48 %. The novel step design improved temperature distrbution, drove recirculation enhancing convection, and increased surface area. These insights can guide engineering of efficient LHTES systems, advancing sustainable energy storage solutions.
期刊介绍:
Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.