Al-Fakih Ali Mohammed , Karim Youssef Nabat , Ting Jiang , Lingyan Liu
{"title":"Recent innovations in explosive trace detection: Advances and emerging technologies","authors":"Al-Fakih Ali Mohammed , Karim Youssef Nabat , Ting Jiang , Lingyan Liu","doi":"10.1016/j.teac.2025.e00261","DOIUrl":null,"url":null,"abstract":"<div><div>Detecting trace explosives is crucial for public safety in forensics, security, and environmental monitoring. This review analyzes recent advancements in four key explosive detection technologies: Ion Mobility Spectrometry (IMS), Gas Chromatography-mass spectrometry (GC-MS), Ambient Ionization Mass Spectrometry (AIMS), and Surface-Enhanced Raman Spectroscopy (SERS). IMS excels in detecting low-volatile explosives in complex environments, while GC-MS offers enhanced sensitivity and resolution for trace analysis. AIMS is noted for its rapid, non-invasive, high-throughput capabilities, ideal for real-time detection. Recent improvements in SERS have increased its sensitivity across a broader range of explosive compounds. Despite these advances, challenges such as low recovery rates, cross-sensitivity, and environmental interference remain. The paper highlights the need for continued innovation to improve sensitivity, selectivity, and accuracy, addressing evolving security, forensic, and environmental threats.</div></div>","PeriodicalId":56032,"journal":{"name":"Trends in Environmental Analytical Chemistry","volume":"46 ","pages":"Article e00261"},"PeriodicalIF":11.1000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Environmental Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214158825000042","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Detecting trace explosives is crucial for public safety in forensics, security, and environmental monitoring. This review analyzes recent advancements in four key explosive detection technologies: Ion Mobility Spectrometry (IMS), Gas Chromatography-mass spectrometry (GC-MS), Ambient Ionization Mass Spectrometry (AIMS), and Surface-Enhanced Raman Spectroscopy (SERS). IMS excels in detecting low-volatile explosives in complex environments, while GC-MS offers enhanced sensitivity and resolution for trace analysis. AIMS is noted for its rapid, non-invasive, high-throughput capabilities, ideal for real-time detection. Recent improvements in SERS have increased its sensitivity across a broader range of explosive compounds. Despite these advances, challenges such as low recovery rates, cross-sensitivity, and environmental interference remain. The paper highlights the need for continued innovation to improve sensitivity, selectivity, and accuracy, addressing evolving security, forensic, and environmental threats.
期刊介绍:
Trends in Environmental Analytical Chemistry is an authoritative journal that focuses on the dynamic field of environmental analytical chemistry. It aims to deliver concise yet insightful overviews of the latest advancements in this field. By acquiring high-quality chemical data and effectively interpreting it, we can deepen our understanding of the environment. TrEAC is committed to keeping up with the fast-paced nature of environmental analytical chemistry by providing timely coverage of innovative analytical methods used in studying environmentally relevant substances and addressing related issues.