{"title":"Synthesis and characterization of PVA/KC/NaYF4:Eu3+ composite fluorescent films","authors":"Xiangyuan Duan, Shuyan Xu","doi":"10.1016/j.cap.2025.03.005","DOIUrl":null,"url":null,"abstract":"<div><div>Fluorescent composite films were prepared using polyvinyl alcohol (PVA) as the substrate and NaYF<sub>4</sub>:Eu<sup>3+</sup> phosphors and κ-carrageenan powder (KC) as the fillers by the casting method. The impact of incorporating NaYF<sub>4</sub>:Eu<sup>3+</sup> on the structural, morphological, mechanical property, thermal stability, and optical characteristics of PVA/KC films was examined. The incorporation of KC promoted the formation of hydrogen bonds between KC and PVA. Consequently, the water contact angle of the films increased by approximately 10°, indicating improved water resistance. Meanwhile, the incorporation of NaYF<sub>4</sub>:Eu<sup>3+</sup> increased the thermal stability of the films, with the temperature at 5 % mass loss rising by approximately 13 °C. Additionally, the mass retention at 600 °C improved by 3.47 %. Notably, the addition of NaYF<sub>4</sub>:Eu<sup>3+</sup> had a negligible effect on the transparency of the films while imparting fluorescent properties. Under UV excitation at 395 nm, the films exhibited maximum fluorescence intensity at 616 nm, indicating a significant fluorescence effect.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"73 ","pages":"Pages 136-144"},"PeriodicalIF":2.4000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567173925000604","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Fluorescent composite films were prepared using polyvinyl alcohol (PVA) as the substrate and NaYF4:Eu3+ phosphors and κ-carrageenan powder (KC) as the fillers by the casting method. The impact of incorporating NaYF4:Eu3+ on the structural, morphological, mechanical property, thermal stability, and optical characteristics of PVA/KC films was examined. The incorporation of KC promoted the formation of hydrogen bonds between KC and PVA. Consequently, the water contact angle of the films increased by approximately 10°, indicating improved water resistance. Meanwhile, the incorporation of NaYF4:Eu3+ increased the thermal stability of the films, with the temperature at 5 % mass loss rising by approximately 13 °C. Additionally, the mass retention at 600 °C improved by 3.47 %. Notably, the addition of NaYF4:Eu3+ had a negligible effect on the transparency of the films while imparting fluorescent properties. Under UV excitation at 395 nm, the films exhibited maximum fluorescence intensity at 616 nm, indicating a significant fluorescence effect.
期刊介绍:
Current Applied Physics (Curr. Appl. Phys.) is a monthly published international journal covering all the fields of applied science investigating the physics of the advanced materials for future applications.
Other areas covered: Experimental and theoretical aspects of advanced materials and devices dealing with synthesis or structural chemistry, physical and electronic properties, photonics, engineering applications, and uniquely pertinent measurement or analytical techniques.
Current Applied Physics, published since 2001, covers physics, chemistry and materials science, including bio-materials, with their engineering aspects. It is a truly interdisciplinary journal opening a forum for scientists of all related fields, a unique point of the journal discriminating it from other worldwide and/or Pacific Rim applied physics journals.
Regular research papers, letters and review articles with contents meeting the scope of the journal will be considered for publication after peer review.
The Journal is owned by the Korean Physical Society.