Yong Hao Chin , Shengqi Jiang , Ying Loong Lee , Yee Kai Tee , Chen Chen , Muhammad Sheraz , Teong Chee Chuah , Yoong Choon Chang
{"title":"Joint aerial base station placement and user association for aerial–terrestrial networks: A whale optimization approach","authors":"Yong Hao Chin , Shengqi Jiang , Ying Loong Lee , Yee Kai Tee , Chen Chen , Muhammad Sheraz , Teong Chee Chuah , Yoong Choon Chang","doi":"10.1016/j.adhoc.2025.103836","DOIUrl":null,"url":null,"abstract":"<div><div>Aerial–terrestrial networks have been envisaged as a key feature of sixth generation (6G) communications to resolve the capacity and coverage issues of the existing terrestrial ground base stations (GBSs) via unmanned aerial vehicle-mounted base stations (ABSs). However, with the introduction of ABSs into the mobile networks, load balancing among ABSs becomes more challenging, as it additionally requires careful placement of ABSs in the three-dimensional (3D) airspace for coverage provisioning. Also, user quality of service (QoS) requirements and interference between ABSs and GBSs require meticulous management during the user association process for effective load balancing. In this paper, we propose a new joint ABS placement and user association scheme based on a whale optimization algorithm (WOA) for throughput maximization and load balancing in aerial–terrestrial networks. Firstly, a multi-objective ABS placement and user association problem is formulated for an aerial–terrestrial network to jointly maximize an <span><math><mi>α</mi></math></span>-fairness-based load balancing utility function and the network throughput. Then, we develop a WOA algorithmic framework to solve the multi-objective problem, with each whale representing a candidate ABS placement solution, whose optimality is evaluated using a fitness function designed based on network throughput maximization and physical isolation constraints. Also, a QoS-aware greedy user association algorithm that maximizes the load balancing utility function is developed to facilitate the fitness evaluation of each whale. Simulation results show that the proposed scheme outperforms several state-of-the-art schemes in terms of Jain’s fairness index, probability of blocking and total throughput.</div></div>","PeriodicalId":55555,"journal":{"name":"Ad Hoc Networks","volume":"173 ","pages":"Article 103836"},"PeriodicalIF":4.4000,"publicationDate":"2025-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ad Hoc Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570870525000848","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Aerial–terrestrial networks have been envisaged as a key feature of sixth generation (6G) communications to resolve the capacity and coverage issues of the existing terrestrial ground base stations (GBSs) via unmanned aerial vehicle-mounted base stations (ABSs). However, with the introduction of ABSs into the mobile networks, load balancing among ABSs becomes more challenging, as it additionally requires careful placement of ABSs in the three-dimensional (3D) airspace for coverage provisioning. Also, user quality of service (QoS) requirements and interference between ABSs and GBSs require meticulous management during the user association process for effective load balancing. In this paper, we propose a new joint ABS placement and user association scheme based on a whale optimization algorithm (WOA) for throughput maximization and load balancing in aerial–terrestrial networks. Firstly, a multi-objective ABS placement and user association problem is formulated for an aerial–terrestrial network to jointly maximize an -fairness-based load balancing utility function and the network throughput. Then, we develop a WOA algorithmic framework to solve the multi-objective problem, with each whale representing a candidate ABS placement solution, whose optimality is evaluated using a fitness function designed based on network throughput maximization and physical isolation constraints. Also, a QoS-aware greedy user association algorithm that maximizes the load balancing utility function is developed to facilitate the fitness evaluation of each whale. Simulation results show that the proposed scheme outperforms several state-of-the-art schemes in terms of Jain’s fairness index, probability of blocking and total throughput.
期刊介绍:
The Ad Hoc Networks is an international and archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in ad hoc and sensor networking areas. The Ad Hoc Networks considers original, high quality and unpublished contributions addressing all aspects of ad hoc and sensor networks. Specific areas of interest include, but are not limited to:
Mobile and Wireless Ad Hoc Networks
Sensor Networks
Wireless Local and Personal Area Networks
Home Networks
Ad Hoc Networks of Autonomous Intelligent Systems
Novel Architectures for Ad Hoc and Sensor Networks
Self-organizing Network Architectures and Protocols
Transport Layer Protocols
Routing protocols (unicast, multicast, geocast, etc.)
Media Access Control Techniques
Error Control Schemes
Power-Aware, Low-Power and Energy-Efficient Designs
Synchronization and Scheduling Issues
Mobility Management
Mobility-Tolerant Communication Protocols
Location Tracking and Location-based Services
Resource and Information Management
Security and Fault-Tolerance Issues
Hardware and Software Platforms, Systems, and Testbeds
Experimental and Prototype Results
Quality-of-Service Issues
Cross-Layer Interactions
Scalability Issues
Performance Analysis and Simulation of Protocols.