Starch-Based scaffold produced by FDM 3D printing technique as Innovative and biosustainable wound dressing

IF 4.4 2区 医学 Q1 PHARMACOLOGY & PHARMACY
Franco Dominici , Anna Imbriano , Debora Puglia , Cinzia Pagano , Francesca Luzi , Aurora Rafanelli , Alessandro Di Michele , Francesco Bonacci , Maria Rachele Ceccarini , Sara Primavilla , Andrea Valiani , Leonardo Tensi , Carmen Laura Pérez Gutierrez , Raquel De Melo Barbosa , César Viseras , Maurizio Ricci , Luana Perioli
{"title":"Starch-Based scaffold produced by FDM 3D printing technique as Innovative and biosustainable wound dressing","authors":"Franco Dominici ,&nbsp;Anna Imbriano ,&nbsp;Debora Puglia ,&nbsp;Cinzia Pagano ,&nbsp;Francesca Luzi ,&nbsp;Aurora Rafanelli ,&nbsp;Alessandro Di Michele ,&nbsp;Francesco Bonacci ,&nbsp;Maria Rachele Ceccarini ,&nbsp;Sara Primavilla ,&nbsp;Andrea Valiani ,&nbsp;Leonardo Tensi ,&nbsp;Carmen Laura Pérez Gutierrez ,&nbsp;Raquel De Melo Barbosa ,&nbsp;César Viseras ,&nbsp;Maurizio Ricci ,&nbsp;Luana Perioli","doi":"10.1016/j.ejpb.2025.114698","DOIUrl":null,"url":null,"abstract":"<div><div>Starch is a safe biopolymer, whose use for the production of scaffolds intended for deep wounds treatment is limited, due to its low mechanical and thermal properties. For this reason, until now, it has been used in low amounts and/or in combination with other biopolymers. The aim of the study was to produce thermoplastic filaments (TPS) with high starch content, useful for scaffolds production by Fusion Deposition Modelling 3D printing technique. TPS was obtained by hot melt extrusion from a mixture of starch (70 % w/w) and glycerol (30 % w/w) combined to cationic clay montmorillonite, citric acid and magnesium stearate to improve strength and processability. The prepared scaffold was characterized and compared to other two scaffolds, where the effect of the addition of polycaprolactone (PCL) or methylsulphonylmethane (MSM) (as thermostable model drug) to the blend was evaluated. The mechanical properties were investigated by Brillouin Light Scattering. In vitro studies highlighted that the scaffolds are: i) able to absorb simulated exudates (reaching a hydration of 35 % in 7 days); ii) safe on keratinocytes (viability &gt; 70 %) stimulating their growth; iii) able to inhibit <em>S. pyogenes</em> growth.</div></div>","PeriodicalId":12024,"journal":{"name":"European Journal of Pharmaceutics and Biopharmaceutics","volume":"210 ","pages":"Article 114698"},"PeriodicalIF":4.4000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pharmaceutics and Biopharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S093964112500075X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Starch is a safe biopolymer, whose use for the production of scaffolds intended for deep wounds treatment is limited, due to its low mechanical and thermal properties. For this reason, until now, it has been used in low amounts and/or in combination with other biopolymers. The aim of the study was to produce thermoplastic filaments (TPS) with high starch content, useful for scaffolds production by Fusion Deposition Modelling 3D printing technique. TPS was obtained by hot melt extrusion from a mixture of starch (70 % w/w) and glycerol (30 % w/w) combined to cationic clay montmorillonite, citric acid and magnesium stearate to improve strength and processability. The prepared scaffold was characterized and compared to other two scaffolds, where the effect of the addition of polycaprolactone (PCL) or methylsulphonylmethane (MSM) (as thermostable model drug) to the blend was evaluated. The mechanical properties were investigated by Brillouin Light Scattering. In vitro studies highlighted that the scaffolds are: i) able to absorb simulated exudates (reaching a hydration of 35 % in 7 days); ii) safe on keratinocytes (viability > 70 %) stimulating their growth; iii) able to inhibit S. pyogenes growth.

Abstract Image

FDM 3D打印技术生产的淀粉基支架,创新的生物可持续伤口敷料
淀粉是一种安全的生物聚合物,由于其较低的机械和热性能,其用于生产用于深度伤口治疗的支架的用途受到限制。由于这个原因,到目前为止,它一直以低剂量和/或与其他生物聚合物结合使用。该研究的目的是通过熔融沉积建模3D打印技术生产高淀粉含量的热塑性细丝(TPS),用于支架的生产。将淀粉(70% w/w)和甘油(30% w/w)与阳离子粘土蒙脱土、柠檬酸和硬脂酸镁混合,通过热熔挤压得到TPS,以提高其强度和加工性。对所制备的支架进行了表征,并与其他两种支架进行了比较,其中评估了在混合物中加入聚己内酯(PCL)或甲基磺酰甲烷(MSM)(作为耐热模型药物)的效果。用布里渊光散射法研究了材料的力学性能。体外研究强调,支架是:i)能够吸收模拟渗出液(在7天内达到35%的水化);Ii)对角质形成细胞安全(生存能力>;70%)刺激他们的成长;iii)能够抑制化脓性葡萄球菌生长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.80
自引率
4.10%
发文量
211
审稿时长
36 days
期刊介绍: The European Journal of Pharmaceutics and Biopharmaceutics provides a medium for the publication of novel, innovative and hypothesis-driven research from the areas of Pharmaceutics and Biopharmaceutics. Topics covered include for example: Design and development of drug delivery systems for pharmaceuticals and biopharmaceuticals (small molecules, proteins, nucleic acids) Aspects of manufacturing process design Biomedical aspects of drug product design Strategies and formulations for controlled drug transport across biological barriers Physicochemical aspects of drug product development Novel excipients for drug product design Drug delivery and controlled release systems for systemic and local applications Nanomaterials for therapeutic and diagnostic purposes Advanced therapy medicinal products Medical devices supporting a distinct pharmacological effect.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信