Miaomiao Zhang, Yibo Gao, Wenlong Wang, Zhanlong Song, Yanpeng Mao
{"title":"Effect of promoters on the syngas production in the microwave-enhanced methane dry reforming over Ni-x/AC (x = Mg, Ca, La, Ce) catalysts","authors":"Miaomiao Zhang, Yibo Gao, Wenlong Wang, Zhanlong Song, Yanpeng Mao","doi":"10.1016/j.jcou.2025.103064","DOIUrl":null,"url":null,"abstract":"<div><div>Capitalizing on the targeted energy transfer, microwave-enhanced dry reforming of methane (MW-DRM) is an attractive CO<sub>2</sub> valorization technology. However, this process coupled with carbon-based catalysts may suffer from rapid deactivation due to severe carbon deposition/loss or active metal sintering. In this study, activated carbon (AC)-supported Ni catalysts modified with different promoters (Mg, Ca, La, Ce) were investigated for MW-DRM process. As proved by the experiment results, Ca-promoted catalyst exhibited the worst reforming activity and stability in the MW-DRM and conventional heating DRM (CH-DRM) processes due to the severe carbon gasification of AC support and the severe sintering of the active metal. Compared to Mg, Ca, and La promoters, Ni-Ce/AC catalyst was demonstrated the optimum catalyst for MW-DRM process, which showed the most excellent stability with good reforming activity over 96 % and 98 % for CH<sub>4</sub> and CO<sub>2</sub> conversion rates, respectively. By converting MW energy attenuation into heat and plasma, the locally-formed high-energy active sites composed of adjacent Ni, CeO<sub>2</sub> and AC support of the Ni-Ce/AC catalyst could contribute to achieving the effective and localized activation of CH<sub>4</sub> and CO<sub>2</sub> molecules, thus leading to the enhancement of the reforming activity and the reduction of the loss of AC support due to CO<sub>2</sub> gasification. Moreover, MW heating method could avoid the excessive consumption of the AC support in Ni-Ce/AC by increasing the graphitization degree of AC, thus prolonging the lifetime of the AC-based catalysts. Above all, these findings provide new insights for the synergistic effect of MW with AC-based catalysts for syngas production.</div></div>","PeriodicalId":350,"journal":{"name":"Journal of CO2 Utilization","volume":"95 ","pages":"Article 103064"},"PeriodicalIF":7.2000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of CO2 Utilization","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212982025000484","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Capitalizing on the targeted energy transfer, microwave-enhanced dry reforming of methane (MW-DRM) is an attractive CO2 valorization technology. However, this process coupled with carbon-based catalysts may suffer from rapid deactivation due to severe carbon deposition/loss or active metal sintering. In this study, activated carbon (AC)-supported Ni catalysts modified with different promoters (Mg, Ca, La, Ce) were investigated for MW-DRM process. As proved by the experiment results, Ca-promoted catalyst exhibited the worst reforming activity and stability in the MW-DRM and conventional heating DRM (CH-DRM) processes due to the severe carbon gasification of AC support and the severe sintering of the active metal. Compared to Mg, Ca, and La promoters, Ni-Ce/AC catalyst was demonstrated the optimum catalyst for MW-DRM process, which showed the most excellent stability with good reforming activity over 96 % and 98 % for CH4 and CO2 conversion rates, respectively. By converting MW energy attenuation into heat and plasma, the locally-formed high-energy active sites composed of adjacent Ni, CeO2 and AC support of the Ni-Ce/AC catalyst could contribute to achieving the effective and localized activation of CH4 and CO2 molecules, thus leading to the enhancement of the reforming activity and the reduction of the loss of AC support due to CO2 gasification. Moreover, MW heating method could avoid the excessive consumption of the AC support in Ni-Ce/AC by increasing the graphitization degree of AC, thus prolonging the lifetime of the AC-based catalysts. Above all, these findings provide new insights for the synergistic effect of MW with AC-based catalysts for syngas production.
期刊介绍:
The Journal of CO2 Utilization offers a single, multi-disciplinary, scholarly platform for the exchange of novel research in the field of CO2 re-use for scientists and engineers in chemicals, fuels and materials.
The emphasis is on the dissemination of leading-edge research from basic science to the development of new processes, technologies and applications.
The Journal of CO2 Utilization publishes original peer-reviewed research papers, reviews, and short communications, including experimental and theoretical work, and analytical models and simulations.