{"title":"Zero-electron-mass limit for Euler–Poisson system in a bounded domain","authors":"Qiangchang Ju , Cunming Liu","doi":"10.1016/j.nonrwa.2025.104376","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study the zero-electron-mass limit of Euler–Poisson system in a bounded domain with an insulating boundary condition. The limit was only verified for the domain with no boundary in previous works. By approximation techniques, we establish the local well-posedness of classical solutions to the initial boundary value problem in the mixed space–time Sobolev space for the fixed parameter. Then, the local convergence of the system to the incompressible Euler equations with damping is proved rigorously for general initial data. Furthermore, the global convergence of smooth solutions is also justified for small initial data.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"85 ","pages":"Article 104376"},"PeriodicalIF":1.8000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121825000628","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we study the zero-electron-mass limit of Euler–Poisson system in a bounded domain with an insulating boundary condition. The limit was only verified for the domain with no boundary in previous works. By approximation techniques, we establish the local well-posedness of classical solutions to the initial boundary value problem in the mixed space–time Sobolev space for the fixed parameter. Then, the local convergence of the system to the incompressible Euler equations with damping is proved rigorously for general initial data. Furthermore, the global convergence of smooth solutions is also justified for small initial data.
期刊介绍:
Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems.
The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.