Dan Luo , Ji Liu , Ryszard Auksztulewicz , Tony Ka Wing Yip , Patrick O. Kanold , Jan W.H. Schnupp
{"title":"Hierarchical deviant processing in auditory cortex of awake mice","authors":"Dan Luo , Ji Liu , Ryszard Auksztulewicz , Tony Ka Wing Yip , Patrick O. Kanold , Jan W.H. Schnupp","doi":"10.1016/j.heares.2025.109242","DOIUrl":null,"url":null,"abstract":"<div><div>Detecting patterns, and noticing unexpected pattern changes, in the environment is a vital aspect of sensory processing. Adaptation and prediction error responses are two components of neural processing related to these tasks, and previous studies in the auditory system in rodents show that these two components are partially dissociable in terms of the topography and latency of neural responses to sensory deviants. However, many previous studies have focused on repetitions of single stimuli, such as pure tones, which have limited ecological validity. In this study, we tested whether the auditory cortical activity shows adaptation to repetition of more complex sound patterns (disyllabic pairs). Specifically, we compared neural responses to violations of sequences based on single stimulus probability only, against responses to more complex violations based on stimulus order. We employed an auditory oddball paradigm and monitored the auditory cortex (AC) activity of awake mice (<em>N</em> = 8) using wide-field calcium imaging. We found that cortical responses were sensitive both to single stimulus probabilities and to more global stimulus patterns, as mismatch signals were elicited following both substitution deviants and transposition deviants. Notably, higher order AC area elicited larger mismatch signaling to those deviants than primary AC, which suggests a hierarchical gradient of prediction error signaling in the auditory cortex. Such a hierarchical gradient was observed for late but not early peaks of calcium transients to deviants, suggesting that the late part of the deviant response may reflect prediction error signaling in response to more complex sensory pattern violations.</div></div><div><h3>Significance statement</h3><div>Detecting the unexpected change of patterns from the dynamic environment is vital for sensory processing, as it is essential to survival for humans and animals. Using wide-field calcium imaging, we investigated whether the auditory cortex of awake mice exhibits a hierarchical gradient of prediction error signaling and its sensitivity to violations of sequences based on stimulus features and stimulus order. We discovered the high-order auditory cortex elicited more significant mismatch signaling to those deviants than primary auditory cortex in substitution and transposition deviants. Calcium transients to deviants showed a hierarchical gradient for late but not for early peaks, indicating that the late part of the deviant response may reflect prediction error signaling in response to more complex sensory pattern violations.</div></div>","PeriodicalId":12881,"journal":{"name":"Hearing Research","volume":"460 ","pages":"Article 109242"},"PeriodicalIF":2.5000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hearing Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378595525000619","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Detecting patterns, and noticing unexpected pattern changes, in the environment is a vital aspect of sensory processing. Adaptation and prediction error responses are two components of neural processing related to these tasks, and previous studies in the auditory system in rodents show that these two components are partially dissociable in terms of the topography and latency of neural responses to sensory deviants. However, many previous studies have focused on repetitions of single stimuli, such as pure tones, which have limited ecological validity. In this study, we tested whether the auditory cortical activity shows adaptation to repetition of more complex sound patterns (disyllabic pairs). Specifically, we compared neural responses to violations of sequences based on single stimulus probability only, against responses to more complex violations based on stimulus order. We employed an auditory oddball paradigm and monitored the auditory cortex (AC) activity of awake mice (N = 8) using wide-field calcium imaging. We found that cortical responses were sensitive both to single stimulus probabilities and to more global stimulus patterns, as mismatch signals were elicited following both substitution deviants and transposition deviants. Notably, higher order AC area elicited larger mismatch signaling to those deviants than primary AC, which suggests a hierarchical gradient of prediction error signaling in the auditory cortex. Such a hierarchical gradient was observed for late but not early peaks of calcium transients to deviants, suggesting that the late part of the deviant response may reflect prediction error signaling in response to more complex sensory pattern violations.
Significance statement
Detecting the unexpected change of patterns from the dynamic environment is vital for sensory processing, as it is essential to survival for humans and animals. Using wide-field calcium imaging, we investigated whether the auditory cortex of awake mice exhibits a hierarchical gradient of prediction error signaling and its sensitivity to violations of sequences based on stimulus features and stimulus order. We discovered the high-order auditory cortex elicited more significant mismatch signaling to those deviants than primary auditory cortex in substitution and transposition deviants. Calcium transients to deviants showed a hierarchical gradient for late but not for early peaks, indicating that the late part of the deviant response may reflect prediction error signaling in response to more complex sensory pattern violations.
期刊介绍:
The aim of the journal is to provide a forum for papers concerned with basic peripheral and central auditory mechanisms. Emphasis is on experimental and clinical studies, but theoretical and methodological papers will also be considered. The journal publishes original research papers, review and mini- review articles, rapid communications, method/protocol and perspective articles.
Papers submitted should deal with auditory anatomy, physiology, psychophysics, imaging, modeling and behavioural studies in animals and humans, as well as hearing aids and cochlear implants. Papers dealing with the vestibular system are also considered for publication. Papers on comparative aspects of hearing and on effects of drugs and environmental contaminants on hearing function will also be considered. Clinical papers will be accepted when they contribute to the understanding of normal and pathological hearing functions.