Coral reef detection using ICESat-2 and machine learning

IF 5.8 2区 环境科学与生态学 Q1 ECOLOGY
Gabrielle A. Trudeau , Kim Lowell , Jennifer A. Dijkstra
{"title":"Coral reef detection using ICESat-2 and machine learning","authors":"Gabrielle A. Trudeau ,&nbsp;Kim Lowell ,&nbsp;Jennifer A. Dijkstra","doi":"10.1016/j.ecoinf.2025.103099","DOIUrl":null,"url":null,"abstract":"<div><div>As anthropogenic impacts threaten natural habitats, effective monitoring strategies are crucial. Coral reefs, among the most vulnerable ecosystems, traditionally employ monitoring techniques that are labor-intensive and costly, prompting the exploration of remote sensing as a cost-effective alternative. Launched in October 2018, the Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) provides high-resolution, high-frequency data, with its green laser offering unprecedented opportunities for bathymetric and coral reef applications. This study investigates the use of ICESat-2 data for atoll coral reef detection, utilizing Heron Island in the Great Barrier Reef, AU, and employing machine learning models. A binary logistic regression (BLR) model and convolutional neural network (CNN) were tested for determining coral reef presence, with the CNN outperforming the BLR in accuracy (85.4%), F1 score (43%), and false positive rate (13.1%). A challenge of the study included the difficulty of balancing false positive rates in predictive models to avoid over- or underestimations of reef extent. These obstacles were mitigated through the integration of algorithmically derived pseudo-rugosity and slope metrics as innovative proxies for seafloor complexity, significantly improving predictive performance. Feature importance analysis identified satellite-derived bathymetry (SDB) depth as the most critical predictor of coral presence, followed by pseudo-rugosity, slope, and various other depth measurements. This research establishes a new application of ICESat-2 data combined with advanced machine learning techniques as a promising method for efficient and cost-effective coral reef monitoring. Future work should refine algorithms and incorporate additional environmental variables to improve model performance across various reef types.</div></div>","PeriodicalId":51024,"journal":{"name":"Ecological Informatics","volume":"87 ","pages":"Article 103099"},"PeriodicalIF":5.8000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Informatics","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574954125001086","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

As anthropogenic impacts threaten natural habitats, effective monitoring strategies are crucial. Coral reefs, among the most vulnerable ecosystems, traditionally employ monitoring techniques that are labor-intensive and costly, prompting the exploration of remote sensing as a cost-effective alternative. Launched in October 2018, the Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) provides high-resolution, high-frequency data, with its green laser offering unprecedented opportunities for bathymetric and coral reef applications. This study investigates the use of ICESat-2 data for atoll coral reef detection, utilizing Heron Island in the Great Barrier Reef, AU, and employing machine learning models. A binary logistic regression (BLR) model and convolutional neural network (CNN) were tested for determining coral reef presence, with the CNN outperforming the BLR in accuracy (85.4%), F1 score (43%), and false positive rate (13.1%). A challenge of the study included the difficulty of balancing false positive rates in predictive models to avoid over- or underestimations of reef extent. These obstacles were mitigated through the integration of algorithmically derived pseudo-rugosity and slope metrics as innovative proxies for seafloor complexity, significantly improving predictive performance. Feature importance analysis identified satellite-derived bathymetry (SDB) depth as the most critical predictor of coral presence, followed by pseudo-rugosity, slope, and various other depth measurements. This research establishes a new application of ICESat-2 data combined with advanced machine learning techniques as a promising method for efficient and cost-effective coral reef monitoring. Future work should refine algorithms and incorporate additional environmental variables to improve model performance across various reef types.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ecological Informatics
Ecological Informatics 环境科学-生态学
CiteScore
8.30
自引率
11.80%
发文量
346
审稿时长
46 days
期刊介绍: The journal Ecological Informatics is devoted to the publication of high quality, peer-reviewed articles on all aspects of computational ecology, data science and biogeography. The scope of the journal takes into account the data-intensive nature of ecology, the growing capacity of information technology to access, harness and leverage complex data as well as the critical need for informing sustainable management in view of global environmental and climate change. The nature of the journal is interdisciplinary at the crossover between ecology and informatics. It focuses on novel concepts and techniques for image- and genome-based monitoring and interpretation, sensor- and multimedia-based data acquisition, internet-based data archiving and sharing, data assimilation, modelling and prediction of ecological data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信