Xing-Yu Liu , Yin-Long Li , Hai-Tao Zhang , Jing Zuo , Hans Gregersen , Hong Ou
{"title":"Combination of ultrasound and supercritical carbon dioxide extraction for trigonelline production from Quisqualis indica","authors":"Xing-Yu Liu , Yin-Long Li , Hai-Tao Zhang , Jing Zuo , Hans Gregersen , Hong Ou","doi":"10.1016/j.ultsonch.2025.107317","DOIUrl":null,"url":null,"abstract":"<div><div>Trigonelline is a natural alkaloid with important nutrient benefits. A hybrid technique adopting ultrasound-assisted supercritical CO<sub>2</sub> extraction (UASCE) was exploited for extraction of trigonelline from <em>Quisqualis indica</em>. Response surface methodology was used to optimize operational parameters of the UASCE process, which indicated that the highest trigonelline yield (TY), 4.22 ± 0.06 mg/g dry mass, reached at 62 °C temperature, 26 MPa pressure, 13.5 wt% co-solvent concentration, and 0.16 W/mL ultrasonic energy density. When compared to traditional supercritical CO<sub>2</sub> extraction, UASCE yielded higher TY more quickly while using milder operational conditions and producing higher antioxidant capacity and concentrations of phytochemicals (alkaloids, flavonoids, triterpenoids) of the extract. Microstructural observation showed that the extensive micro-fractures formed in UASCE-processed samples may have positive effects on solutes liberation. Furthermore, a kinetic study revealed that the developed Sovová models matched with the measured results. The extraction impetus was derived primarily from convection mechanism. Ultrasound increased extraction rates and mass transfer coefficients and shortened the characteristic extraction periods. Additionally, a correlated Chrastil equation was developed for determination of solubility under varying extraction conditions. The Chrastil model reflected actual solubilities of trigonelline satisfactorily and a typical crossover solubility phenomenon was observed. Ultrasound can effectively promote the solubility of trigonelline in supercritical CO<sub>2</sub>. In conclusion, UASCE is a sustainable and high-performance procedure to produce high-quality trigonelline-rich extracts. This paper provides new work about industrial production design of trigonelline for the future. Furthermore, <em>Quisqualis indica</em> serves as a prospective natural source for trigonelline acquisition.</div></div>","PeriodicalId":442,"journal":{"name":"Ultrasonics Sonochemistry","volume":"116 ","pages":"Article 107317"},"PeriodicalIF":8.7000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics Sonochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350417725000963","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Trigonelline is a natural alkaloid with important nutrient benefits. A hybrid technique adopting ultrasound-assisted supercritical CO2 extraction (UASCE) was exploited for extraction of trigonelline from Quisqualis indica. Response surface methodology was used to optimize operational parameters of the UASCE process, which indicated that the highest trigonelline yield (TY), 4.22 ± 0.06 mg/g dry mass, reached at 62 °C temperature, 26 MPa pressure, 13.5 wt% co-solvent concentration, and 0.16 W/mL ultrasonic energy density. When compared to traditional supercritical CO2 extraction, UASCE yielded higher TY more quickly while using milder operational conditions and producing higher antioxidant capacity and concentrations of phytochemicals (alkaloids, flavonoids, triterpenoids) of the extract. Microstructural observation showed that the extensive micro-fractures formed in UASCE-processed samples may have positive effects on solutes liberation. Furthermore, a kinetic study revealed that the developed Sovová models matched with the measured results. The extraction impetus was derived primarily from convection mechanism. Ultrasound increased extraction rates and mass transfer coefficients and shortened the characteristic extraction periods. Additionally, a correlated Chrastil equation was developed for determination of solubility under varying extraction conditions. The Chrastil model reflected actual solubilities of trigonelline satisfactorily and a typical crossover solubility phenomenon was observed. Ultrasound can effectively promote the solubility of trigonelline in supercritical CO2. In conclusion, UASCE is a sustainable and high-performance procedure to produce high-quality trigonelline-rich extracts. This paper provides new work about industrial production design of trigonelline for the future. Furthermore, Quisqualis indica serves as a prospective natural source for trigonelline acquisition.
期刊介绍:
Ultrasonics Sonochemistry stands as a premier international journal dedicated to the publication of high-quality research articles primarily focusing on chemical reactions and reactors induced by ultrasonic waves, known as sonochemistry. Beyond chemical reactions, the journal also welcomes contributions related to cavitation-induced events and processing, including sonoluminescence, and the transformation of materials on chemical, physical, and biological levels.
Since its inception in 1994, Ultrasonics Sonochemistry has consistently maintained a top ranking in the "Acoustics" category, reflecting its esteemed reputation in the field. The journal publishes exceptional papers covering various areas of ultrasonics and sonochemistry. Its contributions are highly regarded by both academia and industry stakeholders, demonstrating its relevance and impact in advancing research and innovation.