Role of chemical groups in regulating membrane tension of mBMSCs under stretch stimulation

IF 5.4 2区 医学 Q1 BIOPHYSICS
Yunqing Ye , Haoyang Huang , Hong Li , Gang Wu
{"title":"Role of chemical groups in regulating membrane tension of mBMSCs under stretch stimulation","authors":"Yunqing Ye ,&nbsp;Haoyang Huang ,&nbsp;Hong Li ,&nbsp;Gang Wu","doi":"10.1016/j.colsurfb.2025.114644","DOIUrl":null,"url":null,"abstract":"<div><div>As a crucial mechanobiological regulator, the tension of the cell membrane plays a vital role in governing cellular adhesion, proliferation, and differentiation processes. Additionally, it displayed a dynamic response to mechanical microenvironmental changes. This research systematically examines the mechanoresponsive behaviors of mouse bone marrow mesenchymal stem cells (mBMSCs) that are cultured on poly(dimethylsiloxane) (PDMS) substrates which are functionalized with methyl (-CH<sub>3</sub>), amino (-NH<sub>2</sub>), and carboxyl (-COOH) groups. Under both static and stretching conditions, it is found that compared with the -CH<sub>3</sub> surface, static culture on the -NH<sub>2</sub> and -COOH functionalized surfaces significantly promotes the proliferation of mBMSCs and upregulates the expression of extracellular matrix adhesion-related genes, especially focal adhesion kinase (FAK) and integrin β1. Morphometric analysis reveals that there are concomitant increases in the cell spreading area and the number of pseudopods on these modified surfaces. Mechanical stretching stimulation not only amplifies these cellular responses but also leads to more uniform FAK distribution. The assessment by atomic force microscopy (AFM) shows that both chemical functionalization (-NH<sub>2</sub>/-COOH) and stretch stimulation reduce the deformability of the cell membrane, and the -NH<sub>2</sub> modification exhibits a greater membrane-stiffening effect than -COOH.</div></div>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"252 ","pages":"Article 114644"},"PeriodicalIF":5.4000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces B: Biointerfaces","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927776525001511","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

As a crucial mechanobiological regulator, the tension of the cell membrane plays a vital role in governing cellular adhesion, proliferation, and differentiation processes. Additionally, it displayed a dynamic response to mechanical microenvironmental changes. This research systematically examines the mechanoresponsive behaviors of mouse bone marrow mesenchymal stem cells (mBMSCs) that are cultured on poly(dimethylsiloxane) (PDMS) substrates which are functionalized with methyl (-CH3), amino (-NH2), and carboxyl (-COOH) groups. Under both static and stretching conditions, it is found that compared with the -CH3 surface, static culture on the -NH2 and -COOH functionalized surfaces significantly promotes the proliferation of mBMSCs and upregulates the expression of extracellular matrix adhesion-related genes, especially focal adhesion kinase (FAK) and integrin β1. Morphometric analysis reveals that there are concomitant increases in the cell spreading area and the number of pseudopods on these modified surfaces. Mechanical stretching stimulation not only amplifies these cellular responses but also leads to more uniform FAK distribution. The assessment by atomic force microscopy (AFM) shows that both chemical functionalization (-NH2/-COOH) and stretch stimulation reduce the deformability of the cell membrane, and the -NH2 modification exhibits a greater membrane-stiffening effect than -COOH.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Colloids and Surfaces B: Biointerfaces
Colloids and Surfaces B: Biointerfaces 生物-材料科学:生物材料
CiteScore
11.10
自引率
3.40%
发文量
730
审稿时长
42 days
期刊介绍: Colloids and Surfaces B: Biointerfaces is an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin, having particular relevance to the medical, pharmaceutical, biotechnological, food and cosmetic fields. Submissions that: (1) deal solely with biological phenomena and do not describe the physico-chemical or colloid-chemical background and/or mechanism of the phenomena, and (2) deal solely with colloid/interfacial phenomena and do not have appropriate biological content or relevance, are outside the scope of the journal and will not be considered for publication. The journal publishes regular research papers, reviews, short communications and invited perspective articles, called BioInterface Perspectives. The BioInterface Perspective provide researchers the opportunity to review their own work, as well as provide insight into the work of others that inspired and influenced the author. Regular articles should have a maximum total length of 6,000 words. In addition, a (combined) maximum of 8 normal-sized figures and/or tables is allowed (so for instance 3 tables and 5 figures). For multiple-panel figures each set of two panels equates to one figure. Short communications should not exceed half of the above. It is required to give on the article cover page a short statistical summary of the article listing the total number of words and tables/figures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信